×

zbMATH — the first resource for mathematics

Heaviside functions of a configuration of hyperplanes. (English. Russian original) Zbl 0664.14030
Funct. Anal. Appl. 21, No. 4, 255-270 (1987); translation from Funkts. Anal. Prilozh. 21, No. 4, 1-18 (1987).
See the review in Zbl 0647.32013.

MSC:
14N99 Projective and enumerative algebraic geometry
05B30 Other designs, configurations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. I. Arnol’d, ”The cohomology ring of the coloured braid group,” Mat. Zametki,5, No. 1, 227-231 (1969).
[2] E. Brieskorn, Sur les Groupes de Tresses (d’après V. Arnold), Sem. Bourbaki, 24e Année, 1971/2. Lecture Notes in Math., No. 317, Springer-Verlag, Berlin (1973).
[3] P. Orlik and L. Solomon, ”Combinatorics and topology of complements of hyperplanes,” Inventiones Math.,56, 167-189 (1980). · Zbl 0432.14016 · doi:10.1007/BF01392549
[4] I. M. Gel’fand, ”Genetic theory of hypergeometric functions,” Dokl. Akad. Nauk SSSR,288, No. 1, 14-18 (1986).
[5] I. M. Gel’fand and S. I. Gel’fand, ”Generalized hypergeometric equations,” Dokl. Akad. Nauk SSSR,288, No. 2, 279-283 (1986).
[6] I. M. Gel’fand and M. I. Graev, ”A duality theorem for general hypergeometric functions,” Dokl. Akad. Nauk SSSR,289, No. 1, 19-23 (1986).
[7] I. M. Gel’fand and A. V. Zelevinskii, ”Algebraic and combinatoric aspects of the general theory of hypergeometric functions,” Funkts. Anal. Prilozhen.,20, No. 3, 17-34 (1986). · Zbl 0629.58017 · doi:10.1007/BF01077310
[8] V. A. Vasil’ev, I. M. Gel’fand, and A. V. Zelevinskii, ”General hypergeometric functions on complex Grassmannians,” Funkts. Anal. Prilozhen.,21, No. 1, 23-38 (1987). · Zbl 0614.33008
[9] A. N. Varchenko, ”Combinatorics and topology of an arrangement of affine hyperplanes in real space,” Funkts. Anal. Prilozhen.,21, No. 1, 11-22 (1987). · Zbl 0615.52005
[10] T. Kohno, ”Homology of a local system on the complement of hyperplanes,” Proc. Jpn. Acad., Ser. A,62, No. 4, 144-147 (1986). · Zbl 0611.55005 · doi:10.3792/pjaa.62.144
[11] A. Bjorner, ”On the homology of geometric lattices,” Algebra Univ.,14, No. 1, 107-128 (1982). · Zbl 0484.06014 · doi:10.1007/BF02483913
[12] M. Jambu and D. Leborne, ”Möbius’s function and arrangements of hyperplanes,” C.R. Acad. Sci. Paris,303, No. 7, 311-319 (1986).
[13] M. Barnabei, A. Brinin, and G.-C. Rota, ”Theory of Möbius functions,” Usp. Mat. Nauk,41, No. 3, 113-157 (1986).
[14] P. McMullen, ”The number of faces of simplicial polytopes,” Israel J. Math.,9, 559-570 (1971). · Zbl 0209.53701 · doi:10.1007/BF02771471
[15] R. Stanley, ”Hilbert functions of graded algebras,” Adv. Math.,28, 57-83 (1978). · Zbl 0384.13012 · doi:10.1016/0001-8708(78)90045-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.