×

zbMATH — the first resource for mathematics

Hölder exponents at given points and wavelet coefficients. (Exposants de Hölder en des points donnés et coefficients d’ondelettes.) (French) Zbl 0665.42012
We prove that, for any \(\epsilon >0\) and any \(f\in C^{\epsilon}({\mathbb{R}}^ n)\), the Hölder exponent of f at a given point \(x_ 0\) can be explicitly computed, up to a logarithmic factor, by size conditions on the wavelet coefficients of f.

MSC:
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
PDF BibTeX XML Cite