×

Ideal arithmetic in Noetherian PI rings. (English) Zbl 0671.16004

If R is a commutative noetherian domain then every ideal of R is a product of prime ideals if and only if every non-zero ideal of R is invertible. In this paper, the authors study noncommutative versions of this result. A (noncommutative) ring R is a Dedekind prime ring if it is noetherian, hereditary and every non-zero ideal is invertible. The authors prove that a prime noetherian PI ring R is a Dedekind prime ring if and only if every ideal is a product of maximal ideals and that R is then a finite module over its centre which is a Dedekind domain. A key point is that a one-sided invertible ideal is both right and left localisable - this depends on a recent symmetry result of A. Braun and R. B. Warfield jun. [J. Algebra 118, 322-335 (1988; Zbl 0658.16008)].
Reviewer: T.H.Lenagan

MSC:

16U30 Divisibility, noncommutative UFDs
16Rxx Rings with polynomial identity
16Dxx Modules, bimodules and ideals in associative algebras
16P40 Noetherian rings and modules (associative rings and algebras)

Citations:

Zbl 0658.16008
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amitsur, S. A., Prime rings having polynomial identities with arbitrary coefficients, (Proc. London Math. Soc., 17 (1967)), 470-486, (3) · Zbl 0189.03502
[2] Asano, K., Arithmetische Idealtheorie in nichtkommutativen Ringen, Japan J. Math., 16, 1-36 (1940) · JFM 65.0103.01
[3] Asano, K., Zur Arithmetik in Schiefringen, I, Osaka Math. J., 1, 98-134 (1949) · Zbl 0041.16601
[4] Braun, A.; Warfield, R. B., Symmetry and localization in Noetherian prime PI rings, J. Algebra, 118, 322-334 (1988) · Zbl 0658.16008
[5] Chatters, A. W.; Hajarnavis, C. R., Rings with chain conditions, (Research Notes in Mathematics (1980), Pitman: Pitman London), No. 44 · Zbl 0446.16001
[6] Gilmer, R., Multiplicative Ideal Theory (1972), Dekker: Dekker New York · Zbl 0248.13001
[7] Hajarnavis, C. R.; Lenagan, T. H., Localisation in Asano orders, J. Algebra, 21, 441-449 (1972) · Zbl 0241.16003
[8] Jacobson, N., PI-algebras, (Lecture Notes in Mathematics, Vol. 441 (1975), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0285.16012
[9] Jategaonkar, A. V., Jacobson’s conjecture and modules over fully bounded Noetherian rings, J. Algebra, 30, 103-121 (1974) · Zbl 0284.16010
[10] Matsumura, H., Commutative Algebra (1980), Benjamin/Cummings: Benjamin/Cummings Reading, MA · Zbl 0211.06501
[11] Michler, G. O., Asano orders, (Proc. London Math. Soc., 19 (1969)), 421-443, (3) · Zbl 0174.33003
[12] Resco, R.; Small, L. W.; Stafford, J. T., Krull and global dimensions of semi-prime Noetherian PI rings, Trans. Amer. Math. Soc., 274, 285-295 (1982) · Zbl 0495.16008
[13] Robson, J. C., Non-commutative Dedekind rings, J. Algebra, 9, 249-265 (1968) · Zbl 0174.06801
[14] Robson, J. C., Idealizers and hereditary Noetherian prime rings, J. Algebra, 22, 45-81 (1972) · Zbl 0239.16003
[15] Zariski, O.; Samuel, P., (Commutative Algebra, Vol. I (1963), Van Nostrand: Van Nostrand New York) · Zbl 0112.02902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.