×

Geometric theory of Stark resonances in multielectron systems. (English) Zbl 0672.58050

Summary: In this paper we consider a class of many-body systems in a weak homogeneous electric field. This class includes atoms and molecules with infinitely heavy nuclei. It follows from one of the results of this paper and a result of the author [ibid. 122, No.1, 1-22 (1989)] that the bound states of such systems in the absence of electric field turn into resonances (which we call the Stark resonances) as soon as the electric field is switched on. (The stability part of this result was earlier proven in I. W. Herbst and B. Simon [ibid. 80, 181-216 (1981; Zbl 0473.47038)] under an assumption of dilation analyticity.) The main result of this paper is exponential bounds on the width (and therefore the lower exponential bounds on the life-time) of the Stark resonances. These bounds are given in terms of the Stark instanton action. In contrast to the usual (one body) action the latter is not entirely classical but incorporates certain quantum data (like ionization energies). The bounds give a partial generalization to the many electron case of the well-known Oppenheimer formula for the hydrogen.

MSC:

58Z05 Applications of global analysis to the sciences
81V70 Many-body theory; quantum Hall effect
58J90 Applications of PDEs on manifolds

Citations:

Zbl 0473.47038
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aguilar, J., Combes, J.M.: A class of analytic perturbations for one-body Schr?dinger Hamiltonians. Commun. Math. Phys.22, 269-275 (1971) · Zbl 0219.47011 · doi:10.1007/BF01877510
[2] Agmon, S.: Lectures on exponential decay of second-order elliptic equations. Princeton Math. Notes29 (1982) · Zbl 0503.35001
[3] Avron, J.: Bender-Wu formulas for the Zeeman effect in hydrogen. Ann. Phys.131, 73-94 (1981) · doi:10.1016/0003-4916(81)90184-6
[4] Avron, J.E., Herbst, I.W.: Spectral and scattering theory of Schr?dinger operators related to the Stark effect. Commun. Math. Phys.52, 239-254 (1977) · Zbl 0351.47007 · doi:10.1007/BF01609485
[5] Balslev, E., Combes, J.M.: Spectral properties of Schr?dinger Hamiltonians with dilation analytic potentials. Commun. Math. Phys.22, 280-294 (1971) · Zbl 0219.47005 · doi:10.1007/BF01877511
[6] Briet, Ph., Combes, J.M., Duclos, P.: On the location of resonances for Schr?dinger operators in the semi-classical limit. III. The shape resonances (in preparation) · Zbl 0629.47043
[7] Bohm, A.: Quantum mechanics. Berlin, Heidelberg, New York: Springer 1986 · Zbl 0994.81502
[8] Combes, J.M., Duclos, P., Klein, M., Seiler, R.: The shape resonances. Commun. Math. Phys.110, 215-236 (1987) · Zbl 0629.47044 · doi:10.1007/BF01207364
[9] Cycon, H.L., Froese, R., Kirsch, W., Simon, B.: Schr?dinger operators. Berlin, Heidelberg, New York: Springer 1987 · Zbl 0619.47005
[10] Cycon, H.L.: Resonances defined by modified dilations. Helv. Phys. Acta53, 969-981 (1985)
[11] Harrell II, E.M., Simon, B.: Duke Math. J.47, 845-902 (1980) · Zbl 0455.35091 · doi:10.1215/S0012-7094-80-04750-X
[12] Herbst, I.W., Simon, B.: Dilation analyticity in constant electric field. II.N-body problem, Borel summability. Commun. Math. Phys.80, 181-216 (1981) · Zbl 0473.47038 · doi:10.1007/BF01213010
[13] Hislop, P., Sigal, I.M.: Shape Resonances in Quantum Mechanics, in ?Proceedings of the Intern. Conf. on Diff. Equations and Math. Physics, Knowles, I. (ed.) 1986; and Quantum Resonances, Memoir AMS (1987) (to appear) · Zbl 0653.46074
[14] Hislop, P., Sigal, I.M.: Lectures on spectral theory (in preparation) · Zbl 0855.47002
[15] Helffer, B., Sj?strand, J.: Resonances en limite semi-classique, M?m. de la S.M.F. no. 24/25, Suppl. de la S.M.F. Bulletin114 (1986) · Zbl 0631.35075
[16] Hunziker, W.: Distortion analyticity and molecular resonance curves. Ann. Inst. H. Poincar?45, 339-358 (1986) · Zbl 0619.46068
[17] Hunziker, W.: Notes on asymptotic perturbation theory.... Helv. Phys. Acta61, 257-304 (1988)
[18] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0148.12601
[19] Landau, L., Lifshitz, E.: Quantum mechanics, London: Pergamon Press 1965
[20] Morrey, Jr., C.B.: Multiple integrals in the calculus of variations. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0142.38701
[21] Oppenheimer, R.: Phys. Rev.31, 66-81 (1928) · JFM 54.0970.02 · doi:10.1103/PhysRev.31.66
[22] Sigal, I.M.: Complex transformation method and resonances in one-body quantum systems. Ann. Inst. H. Poincar?41, 103-114 (1984); and Addendum41, 333 (1984) · Zbl 0568.47008
[23] Sigal, I.M.: Sharp exponential bounds on resonance states and width of resonances. Adv. Appl. Math.9, 127-166 (1988) · Zbl 0652.47008 · doi:10.1016/0196-8858(88)90011-5
[24] Sigal, I.M.: Stark effect in multielectron systems: non-existence of bound states. Preprint, Toronto. Commun. Math. Phys. (to appear) · Zbl 0684.35079
[25] Sigal, I.M.: Life-time of Stark resonances. In: Proc. of Conf. on Field Theory and Related Topics. Feldman, J., Rosen, L. (eds.) CMS Conference Proceedings9, 233-246 (1988) · Zbl 0663.35050
[26] Sigal, I.M.: Geometric parametrics and the many-body Birman-Schwinger principle. Duke Math. J.50, 134-153 (1983) · Zbl 0543.47044 · doi:10.1215/S0012-7094-83-05023-8
[27] Simon, B.: The theory of resonances for dilation-analytic potentials.... Ann. Math.97, 246-274 (1973) · Zbl 0252.47009
[28] Simon, B.: The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Letts.71A, 211-214 (1979) · doi:10.1016/0375-9601(79)90165-8
[29] Simon, B.: Semiclassical Analysis of low lying eigenvalues. II. Tunneling. Ann. Math.120, 89-118 (1984) · Zbl 0626.35070
[30] Titchmarsh, E.C.: Eigenfunction expansions associated with second order differential equations. Oxford: Oxford University Press 1958 · Zbl 0097.27601
[31] Vock, E., Hunziker, W.: Stability of Schr?dinger eigenvalue problems. Commun. Math. Phys.83, 281-302 (1982) · Zbl 0528.35023 · doi:10.1007/BF01976045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.