zbMATH — the first resource for mathematics

Statistical convergence in a locally convex space. (English) Zbl 0674.40008
Let X be a locally convex Hausdorff topological linear space, whose topology is given by a family Q of continuous seminorms q. A sequence \((x_ k)\in X\) converges statistically to \(\ell \in X\) if \(n^{-1}| \{k\leq n:\quad q(x_ k-\ell)\geq \epsilon \}| \to 0\) as \(n\to \infty\), \(\forall q\in Q\), \(\forall \epsilon >0\), where \(| A|\) denotes the cardinality of the set A. Let S be the space of sequences statistically convergent in X. Given a modulus f (for the definition see also the author [Math. Proc. Camb. Philos. Soc. 100, 161-166 (1986; Zbl 0631.46010)]), w(f) denotes the set of \((x_ k)\) for which \(\exists \ell \in X\) such that \((1/n)\sum^{n}_{k=1}f(q(x_ k-\ell))\to 0\) as \(n\to \infty\), \(\forall q\in Q\). At last one says that \((x_ k)\) is slowly oscillating if \((x_ k-x_ n)\to 0\) as \(k\to \infty\), \(n\geq k\) and n/k\(\to 1\). For every modulus f, the following results hold:
1) \([x_ k\to \ell (w(f))]\;\Rightarrow\;[x_ k\to \ell (s)];\)
2) \([S\equiv w(f)]\;\Leftrightarrow\;[f\) is bounded]
3) \([x_ k\to \ell (w(f))] \bigwedge [(x_ k)\) is slowly oscillating]\(\;\Rightarrow\;[x_ k\to \ell].\)
If X is a Banach space, and \(w_ 1\) is the space \(w(f)\) with \(f(t)=1\), then
4) \([w(f)\) is locally convex]\(\;\Leftrightarrow\;[w(f)=w_ 1]\;\Leftrightarrow\;[\lim_{t\to \infty}f(t)/t>0].\)
Reviewer: F.Barbieri

40J05 Summability in abstract structures (should also be assigned at least one other classification number from Section 40-XX)
46A45 Sequence spaces (including Köthe sequence spaces)
Full Text: DOI
[1] DOI: 10.1007/BF01175646 · Zbl 0045.33403 · doi:10.1007/BF01175646
[2] DOI: 10.2307/2308747 · Zbl 0089.04002 · doi:10.2307/2308747
[3] Sal?t, Math. Slovaca 2 pp 139– (1980)
[4] Fast, Colloq. Math 2 pp 241– (1951)
[5] Maddox, Math. Proc. Cambridge Philos. Soc 100 pp 161– (1986)
[6] Fridy, Analysis 5 pp 301– (1985) · Zbl 0588.40001 · doi:10.1524/anly.1985.5.4.301
[7] Maddox, Math. Proc. Cambridge Philos. Soc 101 pp 523– (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.