×

zbMATH — the first resource for mathematics

Real-time computation of feedback controls for constrained optimal control problems. II: A correction method based on multiple shooting. (English) Zbl 0675.49024
Summary: On the basis of part I [ibid. 10, No.2, 129-145 (1989; Zbl 0675.49023)] a numerical method is developed for the real-time computation of neighbouring optimal feedback controls for constrained optimal control problems. We use the idea of multiple shooting to develop a numerical method which has the following properties.
1. The method is applicable to optimal control problems with constraints (differential equations, boundary conditions, inequality constraints, problems with discontinuities, etc.).
2. The control variables and the switching points are computed for the remaining time interval of the process.
3. All constraints are checked.
4. The method is appropriate for real-time computation on onboard computers of space vehicles.
5. The scheme is robust in that controllable deviations from a precalculated flight path are much larger than deviations typical for perturbations occurring in space vehicles.
The re-entry of a space vehicle is investigated as an example. One problem contains a control variable inequality constraint with a large variety of different switching structures, including problems with a corner. A second problem contains a state variable inequality constraint with one or two boundary points or one boundary arc. The different switching structures depend on the tightness of the constraints.

MSC:
49M05 Numerical methods based on necessary conditions
93B40 Computational methods in systems theory (MSC2010)
65K10 Numerical optimization and variational techniques
49K15 Optimality conditions for problems involving ordinary differential equations
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pesch, Optim. control appl. methods 10 pp 129– (1989)
[2] ’Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung’, Report of the Carl-Cranz Gesellschaft, 1971.
[3] Numerical Methods for Two-Point Boundary Value Problems, Blaisdell, London, 1968.
[4] Osborne, J. Math. Anal. Appl. 27 pp 417– (1969)
[5] and , Introduction to Numerical Analysis, Springer, New York, 1980.
[6] ’Numerische Berechnung optimaler Steuerungen von Heizung und Kühlung für ein realistisches Sonnenhausmodell’, Habilitationsschrift, Munich University of Technology, 1982.
[7] ’Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerungen bei beschränkten nichtlinearen Steuerungsproblemen’, Bonner Mathematische Schriften Nr. 164, 1985.
[8] ’Zeitminimale Berechnung von Rückkopplungssteuerungen für optimale Lenkungsprobleme mit Anwendung in der Raumfahrt’, Ph.D. Thesis, Munich University of Technology, 1986; see also Schwerpunktprogramm der Deutschen Forschungsgemeinschaft ’Anwendungsbezogene Optimierung und Steuerung’, Report No. 2, 1987.
[9] and , ’A new general guidance method in constrained optimal control based on the accessory minimum problem’, Schwerpunktprogramm der Deutschen Forschungsgemeinschaft ’Anwendungsbezogene Optimierung und Steuerung’, Report No. 56, 1988.
[10] ’Numerische Berechnung optimaler Flugbahnkorrekturen in Echtzeit-Rechnung’, Ph.D. Thesis, Munich University of Technology, 1978; see also TUM-Report 7820, 1978. · Zbl 0415.49018
[11] Pesch, Appl. Math. Optim. 5 pp 231– (1979)
[12] Pesch, J. Guidance and Control 3 pp 386– (1980)
[13] ’Echtzeitberechnung fastoptimaler Rückkopplungssteuerungen bei Steuerungsproblemen mit Beschränkungen’, Habilitationsschrift, Munich University of Technology, 1986.; see also Schwerpunktprogramm der Deutschen Forschungsgemeinschaft ’Anwendungsbezogene Optimierung und Steuerung’, Report No. 8, 1987.
[14] Powers, AIAA J. 6 pp 2451– (1968)
[15] Powers, AIAA J. 8 pp 2235– (1970)
[16] Speyer, AIAA J. 6 pp 769– (1968)
[17] ’Numerische Berechnung optimaler Flugbahnkorrekturen für den raufstieg einer Mondfähre und das Bremsmanöver eines Raumfahrzeuges in der Erdatmosphäre’, Diploma Thesis, Department of Mathematics, Munich University of Technology, 1983.
[18] ’An initial value method for trajectory optimization problems’, in (ed.) Advances in Control Systems, Vol. 5, Academic Press, New York, 1967.
[19] Breakwell, SIAM J. Control, Ser. A 1 pp 193– (1963)
[20] Deuflhard, Numer. Math. 26 pp 327– (1976)
[21] ’Numerische Behandlung optimaler Steuerprozesse mit Zustandsbeschränkungen mittels der Mehrzielmethode’, Diploma Thesis, Department of Mathematics, Munich University of Technology, 1983.
[22] Jacobson, J. Math. Anal. Appl. 35 pp 255– (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.