×

zbMATH — the first resource for mathematics

Optimal weed population control using nonlinear programming. (English) Zbl 06760317
Summary: A dynamic optimization model for weed infestation control using selective herbicide application in a corn crop system is presented. The seed bank density of the weed population and frequency of dominant or recessive alleles are taken as state variables of the growing cycle. The control variable is taken as the dose-response function. The goal is to reduce herbicide usage, maximize profit in a pre-determined period of time and minimize the environmental impacts caused by excessive use of herbicides. The dynamic optimization model takes into account the decreased herbicide efficacy over time due to weed resistance evolution caused by selective pressure. The dynamic optimization problem involves discrete variables modeled as a nonlinear programming (NLP) problem which was solved by an active set algorithm (ASA) for box-constrained optimization. Numerical simulations for a case study illustrate the management of the Bidens subalternans in a corn crop by selecting a sequence of only one type of herbicide. The results on optimal control discussed here will give support to make decision on the herbicide usage in regions where weed resistance was reported by field observations.
MSC:
90C30 Nonlinear programming
Software:
LBFGS-B; TRON
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, DD; Nissen, SJ; Martin, AR, Mechanism of primisulfuron resistance in a shattercane (sorghum bicolor) biotype, Weed Sci, 46, 158-162, (1998)
[2] Birgin, EG; Martínez, JM, Large-scale active-set box-constrained optimization method with spectral projected gradients, Comput Optim Appl, 23, 101-125, (2002) · Zbl 1031.90012
[3] Birgin, EG; Martínez, JM; Raydan, M, Nonmonotone spectral projected gradient methods on convex sets, SIAM J Optim, 10, 1196-1211, (2000) · Zbl 1047.90077
[4] Britton NF (2003) Essential mathematical biology. Springer Undergraduate Mathematics Series, London, UK · Zbl 1037.92001
[5] Byrd, RB; Lu, P; Nocedal, J; Zhu, C, A limited memory algorithm for bound constrained optimization, SIAM J Sci Comput, 16, 1190-1208, (1995) · Zbl 0836.65080
[6] Carvalho, FT; Moretti, TB; Souza, PA, Eficácia e seletividade de associações de herbicidas utilizados EM pós-emergência na cultura do milho, Rev Bras Herbic, 9, 35-41, (2010)
[7] Christensen S, Streibig JC, Haas H (1990) Interaction between herbicide activity and weed suppression by spring barley varieties. In: Seventh European Weed Research Society Symposium, Helsinki, 367-374
[8] Christiaans, T; Eichner, T; Pething, R, Optimal pest control in agriculture, J Econ Dyn Control, 31, 3965-3985, (2007) · Zbl 1163.91512
[9] Christoffoleti, PJ, Curvas de dose-resposta de biótipos resistente e suscetível da bidens pilosa L. aos herbicidas inibidores da ALS, Sci Agric, 59, 513-519, (2002)
[10] Christoffoleti PJ (2008) Aspectos de resistêcia de plantas daninhas a herbicidas, 3rd edn. Associação Brasileira de Ação à Resistência de Plantas Daninhas, Piracicaba, SP
[11] Cousens, R, A simple model relating yield loss to weed density, Ann Appl Biol, 107, 239-252, (1985)
[12] Dan HA, Procópio ALL, Dan SO, Finotti TR, Assis RL (2010) Seletividade do atrazine à cultura do milheto Pennisetum glaucum, Planta Daninha, 28 no. spe, 1117-1124
[13] Diggle, AJ; Neve, PB; Smith, FP, Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations, Weed Res, 43, 371-382, (2003)
[14] Gazziero DLP, Santos AMB, Voll E, Adegas FS (2008) Resistência de picão—preto (Bidens subalternans) ao herbicida atrazine, in: Congresso Brasileiro da Ciência das Plantas Daninhas e Congresso de la Associacón Latinoamericana de Malezas, Ouro Preto, 7 · Zbl 1169.92046
[15] Gressel, J, Evolving understanding of the evolution of herbicide resistance, Pest Manag Sci, 65, 1164-1173, (2009)
[16] Gressel, J; Segel, LA, The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications, J Theor Biol, 75, 349-371, (1978)
[17] Hager WW (2009) Source code for ASA-CG version 1.3, Available at: http://www.math.ufl.edu/ hager/papers/Software · Zbl 1226.92067
[18] Hager, WW; Zhang, H, A new active set algorithm for box constrained optimization, J Optim, 17, 526-557, (2006) · Zbl 1165.90570
[19] Heap I (2011) The international survey of herbicide resistant weeds, Available at: http://www.weedscience.com
[20] IMEA (2014) Custo de produ ção de milho—Safra 2013/14, Available at: http://www.imea.com.br/upload/publicacoes/arquivos/R410-2013-01-CPMilho.pdf
[21] Jones R, Cacho OJ (2000) A dynamic optimization model of weed control. 44th Annual Conference of the Australian Agricultural and Resource Economics. Australia, Sydney, pp 1-17
[22] Jones, R; Cacho, OJ; Sinden, J, The importance of seasonal variability and tactical responses to risk on estimating the economic benefits of integrated weed management, Agric Econ, 35, 245-256, (2006)
[23] Karam, D, Manejo de plantas daninhas resistentes na cultura do milho, Plantio Direto, 20, 40-46, (2011)
[24] Karam, D; Lara, JFR; Magalhães, PC; Filho, IAP; Cruz, MB, Seletividade de carfentrazone-ethyl aos milhos doce e normal, Rev Bras Milho e Sorgo, 3, 62-68, (2004)
[25] Kennedy JOS (1986) Dynamic programming: applications to agriculture and natural resources. Elsevier, New York, NY
[26] Kotani, K; Kakinaka, M; Matsuda, H, Dynamic economic analysis on invasive species management: some policy implications of catchability, Math Biosci, 220, 1-14, (2009) · Zbl 1169.92046
[27] Kotani, K; Kakinaka, M; Matsuda, H, Optimal invasive species management under multiple uncertainties, Math Biosci, 233, 32-46, (2011) · Zbl 1226.92067
[28] Lin, CJ; Moré, JJ, Newton’s method for large bound-constrained optimization problems, SIAM J Optim, 9, 1100-1127, (1999) · Zbl 0957.65064
[29] Maxwell, BD; Roush, ML; Radosevich, SR, Predicting the evolution and dynamics of herbicide resistance in weed populations, Weed Technol, 4, 2-13, (1990)
[30] Medd R, Nicol HI, Cook A (1995) Seed kill and its role in weed management system: A case study of seed production, seed banks and population growth of avena species (wild oats). Ninth European Weed Research Society Symposium, Budapest 2:627-632 · Zbl 1165.90570
[31] Moss S (2010) Detecting herbicide resistance, Available at: http://www.hracglobal.com/Publications/DetectingHerbicideResistance/tabid/229/ Default.aspx
[32] Neve, P; Norsworthy, JK; Smith, KL; Zelaya, IA, Modelling evolution and management of glyphosate resistance in amaranthus palmeri, Weed Res, 51, 99-112, (2011)
[33] Oliveira, AT; Santos, JB; Camelo, GM; Botelho, RG; Lázri, TM, Efeito da interação do nicosulfuron e chlorpyrifos sobre o banco de sementes e os atributos microbianos do solo, Rev Bras Ciência do Solo, 33, 563-570, (2009)
[34] Pandey, S; Medd, R, Integration of seed and plant kill tactics for control of wild oats: an economic evaluation, Agric Syst, 34, 65-76, (1990)
[35] Powles SB, Preston C (2011) Herbicide cross resistance and multiple resistance in plants, Available at: http://www.hracglobal.com/ Publications/ HerbicideCrossResistanceandMultipleResistance /tabid/224/Default.aspx
[36] Powles SB, Shaner DL (2001) Herbicide resistance and world grains. CRC Press, London, UK
[37] Rafikov, M; Balthazar, JM, Optimal pest control problem in population dynamics, Comput Appl Math, 24, 65-81, (2005) · Zbl 1213.92067
[38] Ralebitso, TK; Senior, E; Verseveld, HWV, Microbial aspects of atrazine degradation in natural environments, Biodegradation, 13, 11-19, (2002)
[39] Seefeldt, SS; Jensen, JE; Fuerst, EP, Log-logistic analysis of herbicide dose-response relationships, Weed Technol, 9, 218-227, (1995)
[40] Streibig JC, Kudsk P (1993) Herbicide bioassays. CRC Press, Boca Raton, FL
[41] Tind, T; Mathiesen, TJ; Jensen, JE; Ritz, C; Streibig, JC, Using a selectivity index to evaluate logarithmic spraying in grass seed crops, Pest Manag Sci, 65, 1257-1262, (2009)
[42] Tranel, PJ; Wright, TR, Resistance of weeds to ALS-inhibiting herbicides: what have we learned?, Weed Sci, 50, 700-712, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.