×

zbMATH — the first resource for mathematics

Slant immersions. (English) Zbl 0677.53060
Let f: \(N\to M\) be an isometric immersion from a Riemannian manifold N into an almost Hermitian manifold M. For each non-zero tangent vector X in \(T_ pN\) at \(p\in N\) the Wirtinger angle \(\theta (X)\in [0,\pi /2]\) is defined as the angle between \(Jf_*X\) and \(f_*T_ pN\), where J is the almost complex structure on M. If \(\theta\) (X) is of constant value \(\theta\neq 0\) for all non-zero tangent vectors X to N, then f is called a slant immersion \((\theta =0\) characterizes the holomorphic and anti- holomorphic immersions into M). In case \(\theta =\pi /2\) the immersion f is also called totally real.
At first the author proves some fundamental properties of slant immersions. Then he restricts to the special case of slant surfaces in the complex 2-plane \({\mathbb{C}}^ 2\). Besides some characterizations of such surfaces he gives several (non-trivial) examples and obtains a classification of slant surfaces in \({\mathbb{C}}^ 2\) with parallel mean curvature vector. [Reviewer’s remark: Recently, the author and Y. Tazawa proved that every compact slant submanifold in \({\mathbb{C}}^ m\) is totally real [Slant submanifolds in complex number spaces (preprint)].]
Reviewer: J.Berndt

MSC:
53C40 Global submanifolds
53A05 Surfaces in Euclidean and related spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, C.R. Acad. Sci. Paris. Ser I 301 pp 209– (1985)
[2] DOI: 10.2307/1996914 · Zbl 0286.53019
[3] DOI: 10.1007/BF01294767 · Zbl 0451.53041
[4] Chen, Geometry of Submanifolds (1973) · Zbl 0262.53036
[5] Chen, J. Math. Pures Appl. 66 pp 321– (1987)
[6] Lawson, Lectures on Minimal Submanifolds (1980)
[7] DOI: 10.2307/1970156 · Zbl 0097.38805
[8] DOI: 10.1007/BF01917994 · Zbl 0518.53023
[9] DOI: 10.1090/S0002-9904-1969-12176-2 · Zbl 0185.24803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.