×

Finding leading modes of a viscous free surface flow: An asymmetric generalized eigenproblem. (English) Zbl 0677.65032

The paper presents a computational procedure for investigating the stability of steady, two-dimensional, slide coating flow of Newtonian liquid to small, two-dimensional disturbances. The analysis is done by means of Galerkin’s method and finite element basis functions. The resulting computational task consists for large \((n>2000)\) sparse, nonsymmetric and banded singular generalized eigenproblems in which the matrices depend on system parameters. These eigenproblems are solved for a few leading modes (eigenvalues of largest real part and the corresponding eigenvectors) by a flexible method assembled from the iterative Arnoldi algorithm with Schur-Wielandt deflation; initialization that can incorporate rational acceleration; real or complex shift of eigenvalues and approximately exponential preconditioning by rational transformation.
Reviewer: Petko Hr.Petkov

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

SRRIT
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abbott, J. P. (1978). An efficient algorithm for the determination of certain bifurcation points,J. Comput. Appl. Math. 4, 19-27. · Zbl 0384.65022
[2] Arnoldi, W. E. (1951). The principle of minimized iteration in the solution of the matrix eigenvalue problem,Q. Appl. Math. 9, 17-29. · Zbl 0042.12801
[3] Bathe, K.-J. (1982).Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.
[4] Bauer, F. L. (1957). Das Verfahren der Treppeniteration und verwandte Verfahren zur Losung algebraischer Eigenwertprobleme,Z. angew. Math. Phys. 8, 214-235. · Zbl 0078.12103
[5] Bixler, N. E. (1982). Stability of coating flow, Ph.D. thesis, University of Minnesota, Minneapolis.
[6] Christodoulou, K. N., and Scriven, L. E. (1989a). The fluid mechanics of slide coating,J Fluid Mech., in press. · Zbl 0681.76040
[7] Christodoulou, K. N., and Scriven, L. E. (1989b). Discretization of free surface flows and other free boundary problems,J. Comput. Phys., to be published. · Zbl 0743.76050
[8] Christodoulou, K. N., and Scriven, L. E. (1989c). Operability limits of flow systemsx with free boundaries by solving nonlinear eigenvalue problems,Int. J. Num. Meth. Fluids, to be published.
[9] Christodoulou, K. N., and Scriven, L. E. (1989d). Stability of two-dimensional viscous free surface flows to small three-dimensional disturbances, in preparation. · Zbl 0681.76040
[10] Coyle, D. J. (1984). The fluid mechanics of roll coating: Steady flows, stability, and rheology, Ph.D. thesis, University of Minnesota, Minneapolis.
[11] Daniel, G. W., Gragg, W. B., Kauffmann, L., and Stewart, G. W. (1976). Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization,Math. Comput. 30, 772-795. · Zbl 0345.65021
[12] Eriksson, L. E., and Rizzi, A. (1985). Computer-aided analysis of the convergence to steady state of discrete approximations to the Euler equations,J. Comput. Phys. 57, 90-128. · Zbl 0624.76078
[13] Franklin, J. N. (1968).Matrix theory, Prentice-Hall, Engelwood Cliffs, New Jersey. · Zbl 0174.31501
[14] Goldhirsch, I., Orszag, S. A., and Maulik, B. K. (1987). An efficient method for computing leading eigenvalues of large asymmetric matrices,J. Sci. Comput. 2, 33-58. · Zbl 0666.65033
[15] Golub, G. H., and Van Loan, C. F. (1983).Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland. · Zbl 0559.65011
[16] Higgins, B. G. (1980). Capillary hydrodynamics and coating beads, Ph.D. thesis, University of Minnesota, Minneapolis.
[17] Hood, P. (1976). Frontal solution program for unsymmetric matrices,Int. J. Num. Meth. Eng. 10, 379-399. · Zbl 0322.65013
[18] Hood, P. (1977). Correction,Int. J. Num. Meth. Eng. 11, 1055.
[19] Jennings, A., and Stewart, W. (1980). Simultaneous iteration for partial eigensolution of real matrices,J. Math. Inst. Appl. 15, 351-361. · Zbl 0307.65042
[20] Jepson, A. D. (1981). Numerical Hopf bifurcation, thesis, Part II, California Institute of Technology, Pasadena.
[21] Katagiri, Y., and Scriven, L. E. (1989). Analysis of transient response of a coating operation, in preparation.
[22] Keller, H. B. (1977). Numerical solution of bifurcation and nonlinear eigenvalue problems. In Rabinowitz, P. H. (ed.),Applications of Bifurcation Theory, Dekker, New York, pp. 45-52. · Zbl 0581.65043
[23] Kheshgi, H. S., and Scriven, L. E. (1982). Penalty finite element analysis of time-dependent two-dimensional film flows, in Kawai, T. (ed.),Finite Element Flow Analysis, University of Tokyo Press, Tokyo, pp. 113-120. · Zbl 0506.76028
[24] Lamb, H. (1945).Hydrodynamics, 6th ed., Dover Publications, New York. · Zbl 0828.01012
[25] Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of linear differential and integral operator,J. Res. Natl. Bur. Stand. 45, 255-282.
[26] Parlett, B. (1980).The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, New Jersey. · Zbl 0431.65017
[27] Parlett, B., and Saad, Y. (1985). Complex shift and invert strategies for real matrices, Technical Report No. YALEU/DCS-RR-424, Yale University, Computer Science Department, New Haven, Connecticut. · Zbl 0623.65045
[28] Parlett, B. N., Taylor, D. T., and Liu, Z. S. (1985). A look-ahead Lanczos algorithm for unsymmetric matrices,Math. Comput. 44, 105-124. · Zbl 0564.65022
[29] Petzold, L., and Loetstedt, P. (1986). Numerical solultion of nonlinear differential equations with algebraic constraints II: Practical implications.SIAM J. Sci. Stat. Comput. 7, 720-733. · Zbl 0632.65086
[30] Pritchard, W. G. (1986). Instability and chaotic behaviour in a free-surface flow,J. Fluid Mech. 165, 1-60.
[31] Reusch, M. F., Ratzan, L., Pomphrey, N., and Park, W. (1988). Diagonal PadĂ© approximations for initial value problems,SIAM J. Sci. Stat. Comput. 9, 829-838. · Zbl 0656.65057
[32] Ruschak, K. J. (1980). A method for incorporating free boundaries with surface tension in finite element fluid flow simulator,Int. J. Num. Meth. Eng. 15, 639-1648. · Zbl 0426.76038
[33] Ruschak, K. J. (1983). A three-dimensional linear stability analysis for two-dimensional free boundary flows by the finite element method,Comput. Fluids 11, 391-401. · Zbl 0526.76044
[34] Saad, Y. (1980). Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices,Lin. Alg. Appl. 34, 269-295. · Zbl 0456.65017
[35] Saad, Y. (1982). Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems, Technical Report No. 255, Department of Computer Science, Yale University, New Haven, Connecticut. · Zbl 0539.65013
[36] Saad, Y. (1989). Numerical solution of large nonsymmetric eigenvalue problems, in Proceedings of the Workshop on Practical Iterative Methods for Large Scale Computations. University of Minnesota Supercomputer Institute, Minneapolis, October 23-25, 1988. Elsevier Science Publishers B.V., Amsterdam. · Zbl 0798.65053
[37] Saff, E. B., Schoenhage, A., and Varge, R. S. (1976). Geometric convergence toe ?z by rational functions with real poles,Numer. Math. 25, 307-322. · Zbl 0307.65025
[38] Siscovec, R. F., Dembart, B., Epton, M. A., Erisman, A. M., Manke, J. W., and Yip, E. L. (1979). Solvability of large scale descriptor systems, Report, DOE Contract No. ET-78-C-01-2876, Boeing Computer Services Company, Seattle, Washington.
[39] Stewart, G. W. (1973).Introduction to Matrix Computations, Academic Press, New York. · Zbl 0302.65021
[40] Stewart, G. W. (1976). Simultaneous iteration for computing invariant subspaces of nonHermitian matrices,Numer. Math. 25, 123-136. · Zbl 0328.65025
[41] Stewart, G. W. (1978). SRRIT-A Fortran subroutine to calculate the dominant invariant subspaces of a real matrix, Technical Report TR-514, University of Maryland, College Park.
[42] Storer, R. G. (1986). Numerical studies of toroidal resistive magnetohydrodynamic instabilities,J. Comput. Phys. 66, 294-323. · Zbl 0613.76055
[43] Strang, G., and Fix, G. (1973).An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, New Jersey. · Zbl 0356.65096
[44] Wilkinson, J. H. (1965).The Algebraic Eigenvalue Problem, Clarendon Press, Oxford. · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.