Tu, Guizhang The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. (English) Zbl 0678.70015 J. Math. Phys. 30, No. 2, 330-338 (1989). Summary: A new approach to Hamiltonian structures of integrable systems is proposed by making use of a trace identity. For a variety of isospectral problems that can be unified to one model \(\psi_ x=U\psi\), it is shown that both the related hierarchy of evolution equations and the Hamiltonian structure can be obtained from the same solution of the equation \(V_ x=[U,V]\). Cited in 15 ReviewsCited in 258 Documents MSC: 37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) 70H05 Hamilton’s equations 37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests Keywords:symplectic operator; Hamiltonian structures of integrable systems; trace identity; isospectral problems; hierarchy of evolution equations PDF BibTeX XML Cite \textit{G. Tu}, J. Math. Phys. 30, No. 2, 330--338 (1989; Zbl 0678.70015) Full Text: DOI OpenURL References: [1] DOI: 10.1063/1.1665232 · Zbl 0283.35022 [2] DOI: 10.1063/1.523777 · Zbl 0383.35065 [3] Gel’fand I. M., Funct. Anal. Appl. 13 pp 13– (1979) [4] DOI: 10.1016/0362-546X(79)90052-X · Zbl 0419.35049 [5] DOI: 10.1088/0031-8949/20/3-4/026 · Zbl 1063.37559 [6] DOI: 10.1017/S0305004100057364 · Zbl 0445.58012 [7] DOI: 10.1016/0167-2789(81)90004-X · Zbl 1194.37114 [8] DOI: 10.1017/S0143385700001292 · Zbl 0495.58008 [9] DOI: 10.1016/0167-2789(82)90049-5 · Zbl 1194.35342 [10] DOI: 10.1007/BF02721504 [11] Tu G. Z., Sci. Exploration 2 pp 85– (1982) [12] Boiti M., Nuovo Cimento B 75 pp 145– (1983) [13] DOI: 10.1063/1.525944 · Zbl 0525.35077 [14] DOI: 10.1016/0375-9601(83)90124-X [15] Tu G. Z., Arab. J. Sci. Eng. 9 pp 187– (1984) [16] DOI: 10.1007/BF02748974 [17] Tu G. Z., J. Eng. Math. 1 pp 7– (1984) [18] DOI: 10.1002/sapm1986752179 · Zbl 0613.35073 [19] Tu G. Z., Sci. Sin. A 29 pp 138– (1986) [20] DOI: 10.1063/1.527309 · Zbl 0614.70014 [21] Tu G. Z., Commun. Appl. Math. Comp. 1 pp 80– (1987) [22] Tu G. Z., Adv. Sci. China Ser. Math. 2 pp 45– (1989) [23] Tu G. Z., Sci. Sin. A 31 pp 28– (1988) [24] DOI: 10.1063/1.523737 · Zbl 0383.35015 [25] DOI: 10.1016/0167-2789(83)90281-6 · Zbl 0584.35075 [26] DOI: 10.1143/JPSJ.47.1698 · Zbl 1334.35256 [27] DOI: 10.1143/PTP.69.48 · Zbl 1200.45003 [28] DOI: 10.1016/0022-247X(83)90068-9 · Zbl 0523.49017 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.