zbMATH — the first resource for mathematics

Quadratic Poincaré gauge theory of gravity: A comparison with the general relativity theory. (English) Zbl 0679.53069
Authors’ review: “The classical dynamics of the gravitational field in the Poincaré gauge theory is studied. The most general Lagrangian quadratic in curvature and torsion is considered. The relevant field equations and their solutions are analyzed in detail; with particular emphasis on the comparison of the Poincaré gauge models with the general relativity theory. We investigate correspondence between the spaces of exact solutions of these theories, both in the presence and absence of material sources, and with or without torsion. Some new exact solutions are obtained without the use of the double duality ansatz. The weak-field approximation is discussed, and gravitational radiation is considered.”
Reviewer: E.Malec

53B50 Applications of local differential geometry to the sciences
35Q99 Partial differential equations of mathematical physics and other areas of application
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
Full Text: DOI
[1] Trautman, A. (1976).Repts. Math. Phys.,10, 297. · Zbl 0339.53023
[2] Ponomariev, V. N., Barvinsky, A. O., and Obukhov, Yu. N. (1985).Geometrodynamical Methods and Gauge Approach to the Gravity Theory (Energoatomizdat, Moscow).
[3] Trautman, A. (1973).Symp. Math.,12, 139.
[4] Hehl, F. W., von der Heyde, P., Kerlick, G. D. and Nester, J. M. (1976).Rev. Mod. Phys.,48, 393. · Zbl 1371.83017
[5] Obukhov, Yu. N., and Nazarovsky, E. A. (1984). InRelativity, Astrophysics and Cosmology: Proceedings of the Sir A. Eddington Centennial Symposium, V. De Sabbata and T. M. Karade, eds. (World Scientific, Singapore) Vol. 1, p. 137.
[6] Yan, M. L. (1983).Commun. Theor. Phys. (China),2, 1281.
[7] Ponomariev, V. N., and Tseytlin, A. A. (1978).Vestnik Mosk. Univ. (ser. fiz. astr.),N6, 57.
[8] Kopczynski, W. (1975).Bul. Acad. Pol. Sci. (ser. math. astr. phys.),23, 467.
[9] Sciama, D. W. (1962). InRecent Development in General Relativity (Oxford University Press, Oxford), p. 415.
[10] Kibble, T. W. (1961).J. Math. Phys.,2, 212. · Zbl 0095.22903
[11] Nieh, H. T. (1980).J. Math. Phys.,21, 1439.
[12] Nieh, H. T., and Yan, M. L. (1982).J. Math. Phys.,23, 373. · Zbl 0491.53012
[13] Neville, D. (1980).Phys. Rev.,D21, 867.
[14] Sezgin, E., and van Nieuwenhuizen, P. (1980).Phys. Rev.,D21, 3269.
[15] Sezgin, E. (1981).Phys. Rev.,D24, 1677.
[16] Hayashi, K., and Shirafuji, T. (1980).Progr. Theor. Phys.,64, 1435, 2222. · Zbl 1097.83526
[17] Kuhfuss, R., and Nitsch, J. (1986).Gen. Relat. Grav.,18, 1207.
[18] Rauch, R. T. (1982).Phys. Rev.,D26, 931.
[19] Neville, D. (1982).Phys. Rev.,D26, 2638.
[20] Obukhov, Yu. N. (1982).Phys. Lett.,A90, 13.
[21] Nieh, H. T. (1982).Phys. Lett.,A88, 388.
[22] Dereli, T., and Tucker, R. W. (1982).Phys. Lett.,B110, 206.
[23] Frolov, B. N. (1979).Acta Phys. Polon.,B9, 823.
[24] Frolov, B. N. (1984). InAbstracts of Contributed Papers at the Soviet Conference on Relativity Theory and Gravitation (Moscow), p. 236.
[25] Debney, G., Fairchild, E. E., and Siklos, S. T. (1978).Gen. Relat. Grav.,9, 879.
[26] Nikolaenko, V. M. (1979). InProblems of Gravity Theory and Elem. Part. Theory, N. 10 (Atomizdat, Moscow), p. 66.
[27] Ni, W. T. (1975).Phys. Rev. Lett.,35, 319.
[28] Kramer, D., Stephani, H., MacCallum, M., and Herlt, E. (1980). Schmutzer, E. (ed.),Exact Solutions of the Einstein’s Field Equations (Berlin). · Zbl 0449.53018
[29] Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge). · Zbl 0265.53054
[30] Flaherty, E. J. (1976).Hermitian and Kähierian geometry. Lect. Notes Phys. (Springer, Berlin). · Zbl 0323.53048
[31] Ponomariev, V. N., and Zhytnikov, V. V. (1983). InAbstracts of Contributed Papers at the 10th International Conference on General Relativity and Gravitation (Rome), p. 330.
[32] Zhytnikov, V. V., and Ponomariev, V. N. (1986). InProblems of Gravity Theory and Elem. Part. Theory, N. 17 (Energoatomizdat, Moscow), p. 93.
[33] Ramaswamy, S., and Yasskin, P. B. (1978).Phys. Rev.,D19, 2264.
[34] Neville, D.Phys. Rev.,D21, 2770.
[35] Rauch, R., and Nieh, H. T. (1981).Phys. Lett.,A81, 113.
[36] Rauch, R. T., and Nieh, H. T. (1981).Phys. Rev.,D24, 2029.
[37] Rauch, R. T. (1982).Phys. Rev.,D25, 577.
[38] Rauch, R. T., Shaw, J. C., and Nieh, H. T. (1982).Gen. Relat. Grav.,14, 331.
[39] Mielke, E. W. (1984).Fortschr. Phys.,32, 639.
[40] Mielke, E. W. (1981).Gen. Relat. Grav.,13, 175. · Zbl 0456.53041
[41] Hehl, F. W., Ne’eman, Y., Nitsch, J., and von der Heyde, P. (1978).Phys. Lett.,B78, 102.
[42] Mielke, E. W. (1984).J. Math. Phys.,25, 663.
[43] Baekler, P., Hehl, F. W., and Lenzen, H. J. (1983). InProceedings of the Third Marcel Grossman Meeting on General Relativity, Ning, H., ed., p. 107. · Zbl 0526.53027
[44] Baekler, P., Hehl, F. W., and Mielke, E. W. (1982). InProceedings of the Second Marcel Grossman Meeting on General Relativity, Ruffini, R., ed.
[45] Baekler, P. (1981).Phys. Lett.,B99, 329.
[46] Benn, I. M., Dereli, T., and Tucker, R. W. (1982).J. Phys. A: Math, and Gen.,A15, 849.
[47] Benn, I. M., Dereli, T., and Tucker, R. W. (1981).Gen. Relat. Grav.,13, 581.
[48] Baekler, P., and Hehl, F. W. (1983). InProceedings of Internat. Symp. on Gauge Theories and Gravitation, Nara, Japan. Lect. Notes Phys.,176, 1. · Zbl 0526.53027
[49] McCrea, J. D. (1983).J. Phys. A: Math. and Gen.,A16, 997.
[50] Baekler, P. (1983). Preprint (University of Cologne).
[51] McCrea, J. D., Baekler, P. and Gurses, M. (1987). A Kerr-like solution of the Poincaré gauge field equations (Köln University, preprint).
[52] Lenzen, H. J. (1985).Gen. Relat. Grav.,17, 1137. · Zbl 0569.53041
[53] Baekler, P. (1986).Gen. Relat. Grav.,18, 31. · Zbl 0574.53055
[54] Baekler, P., Hehl, F. W., and Mielke, E. W. (1986). Nonmetricity and torsion: Facts and fancies in gauge approaches to gravity (Köln University, preprint).
[55] Fen, B. L. Y., and Zung, T. C. (1979).Acta Phys. Polon.,B10, 839.
[56] Adamowicz, W. (1980).Gen. Relat. Grav.,12, 677. · Zbl 0454.35085
[57] Mielke, E. W., and Scherzer, R. (1981).Phys. Rev.,D24, 2111.
[58] Clement, G. (1976).Nucl. Phys.,B114, 437.
[59] Baekler, P., Mielke, E. W., Hecht, R., and Hehl, F. W. (1987).Nucl. Phys. B (in press).
[60] Minkevich, A. V., and Kudin, V. I. (1981).Izv. Akad. Nauk BSSR (ser. fiz. mat. nauk),N3, 103.
[61] Garecki, J. (1985).Acta Phys. Polon.,B16, 699.
[62] Minkevich, A. V. (1980).Phys. Lett.,A80, 232.
[63] Kudin, V. I., Minkevich, A. V., and Fedorov, F. I. (1981).Izv. Akad. Nauk BSSR (ser. fiz. mat. nauk),N4, 59.
[64] Muller-Hoissen, F. (1982).Phys. Lett.,A92, 433.
[65] Blagojevic, M., Popovic, D. S., and Zivanovic, Dj. (1982).Phys. Lett.,B109, 431.
[66] Minkevich, A. V. (1983).Phys. Lett.,A95, 422.
[67] Goenner, H., and Muller-Hoissen, F. (1984).Class. Quantum Gravity,1, 651.
[68] Canale, A., de Ritis, R., and Tarantino, C. (1984).Phys. Lett.,A100, 178.
[69] Garecki, J. (1983).Acta Phys. Polon.,B14, 713.
[70] Chen, H. H., Hsu, R. R., and Yeung, H. B. (1985).Class. Quantum Gravity,2, 927. · Zbl 0576.53079
[71] Korotky, V. A., and Obukhov, Yu. N. (1989). Cosmology in Poincaré gauge theory of gravity (in preparation).
[72] Zhang, Y. Z. (1983).Phys. Rev.,D28, 1866.
[73] Zhang, Y. Z., Guan, K. Y. (1984).Gen. Relat. Grav.,16, 835. · Zbl 0544.53024
[74] Kudin, V. I. (1982).Izv. Akad. Nauk BSSR (ser. fiz. mat. nauk),N3, 114.
[75] Belyaletdinov, I. P., and Frontov, V. N. (1987). Method of experimental estimate of hypothetical dependence of the gravitational constant on distance (to be published).
[76] Eardly, D. M., Lee, D. L., Lightman, A. P., Wagoner, R. V., and Will, C. (1975).Phys. Rev. Lett.,30, 884.
[77] Eardly, D. M., Lee, D. L., and Lightman, A. P. (1973).Phys. Rev.,D10, 3308.
[78] van Nieuwenhuizen, P. (1973).Phys. Rev.,D7, 2300.
[79] van Nieuwenhuizen, P. (1973).Nucl. Phys.,B60, 478.
[80] Lenzen, H. J. (1984).Nuovo Cimento,82B, 85.
[81] Gambini, R., and Herrera, L. (1980).J. Math. Phys.,21, 1449.
[82] Yang, C. N. (1974).Phys. Rev. Lett.,33, 1461. · Zbl 1329.81278
[83] Moller, C. (1972).The Theory of Relativity (Oxford University Press, Oxford). · Zbl 0169.57602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.