zbMATH — the first resource for mathematics

On the generalized Bohnenblust-Hille inequality for real scalars. (English) Zbl 06816310
Summary: In this paper we obtain new lower and upper estimates for the sharp constants in the generalized Bohnenblust-Hille inequality introduced in [N. Albuquerque et al., J. Funct. Anal. 266, No. 6, 3726–3740 (2014; Zbl 1319.46035)]. We apply these results to find optimal constants in the generalized Bohnenblust-Hille inequality and also to recover the optimal constants of the mixed \(\left( \ell_{1},\ell_{2}\right) \)-Littlewood inequalities recently obtained in [D. Pellegrino, J. Number Theory 160, 11–18 (2016; Zbl 1431.46024); with E. V. Teixeira, “Towards sharp Bohnenblust-Hille constants”, Commun. Contemp. Math., Article ID 750029 (2017; doi:10.1142/s0219199717500298), arXiv:1604.07595].

47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
32A22 Nevanlinna theory; growth estimates; other inequalities of several complex variables
47H60 Multilinear and polynomial operators
Full Text: DOI
[1] Albuquerque, N; Bayart, F; Pellegrino, D; Seoane-Sepúlveda, JB, Sharp generalizations of the multilinear Bohnenblust-Hille inequality, J. Funct. Anal., 266, 3726-3740, (2014) · Zbl 1319.46035
[2] Araújo, G; Pellegrino, D, On the constants of the Bohnenblust-Hille inequality and Hardy-Littlewood inequalities, Bull. Braz. Math. Soc., (2016) · Zbl 06767894
[3] Bayart, F; Pellegrino, D; Seoane-Sepúlveda, JB, The Bohr radius of the \(n\)-dimensional polydisk is equivalent to \(\sqrt{(\log n)/n}\), Adv. Math., 264, 726-746, (2014) · Zbl 1331.46037
[4] Bohnenblust, HF; Hille, E, On the absolute convergence of Dirichlet series, Ann. Math., 32, 600-622, (1931) · JFM 57.0266.05
[5] Davie, AM, Quotient algebras of uniform algebras, J. Lond. Math. Soc., 7, 31-40, (1973) · Zbl 0264.46055
[6] Diniz, D; Muñoz-Fernández, GA; Pellegrino, D; Seoane-Sepúlveda, JB, Lower bounds for the constants in the Bohnenblust-Hille inequality: the case of real scalars, Proc. Am. Math. Soc., 142, 575-580, (2014) · Zbl 1291.46040
[7] Garling, D.J.H.: Inequalities: A Journey into Linear Analysis. Cambridge University Press, Cambridge (2007) · Zbl 1135.26014
[8] Haagerup, U, The best constants in the khinchine inequality, Stud. Math., 70, 231-283, (1982) · Zbl 0501.46015
[9] Kaijser, S, Some results in the metric theory of tensor products, Stud. Math., 63, 157-170, (1978) · Zbl 0392.46047
[10] Montanaro, A, Some applications of hypercontractive inequalities in quantum information theory, J. Math. Phys., 53, 122206, (2012) · Zbl 1278.81045
[11] Núñez-Alarcón, D; Pellegrino, D; Seoane-Sep úlveda, JB; Serrano-Rodríguez, DM, There exist multilinear Bohnenblust-Hille constants \(\left( C_{n}\right) _{n=1}^{∞ }\) with \( \lim _{n→ ∞ }\left( C_{n+1}-C_{n}\right) =0\),, J. Funct. Anal., 264, 429-463, (2013) · Zbl 1264.46033
[12] Pellegrino, D, The optimal constants of the mixed \(\left( ℓ _{1},ℓ _{2}\right) \)-Littlewood inequality, J. Number Theory, 160, 11-18, (2016) · Zbl 1431.46024
[13] Pellegrino, D., Teixeira, E.: Towards sharp Bohnenblust-Hille constants. Commun. Contemp. Math. (to appear) · Zbl 1403.46037
[14] Queffélllec, H, Bohr’s vision of ordinary Dirichlet series: old and new results, J. Anal., 3, 43-60, (1995) · Zbl 0881.11068
[15] Santos, J; Velanga, T, On the Bohnenblust-Hille inequality for multilinear forms, Results Math., (2016) · Zbl 06785696
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.