zbMATH — the first resource for mathematics

On concepts of directional differentiability. (English) Zbl 0682.49015
Various definitions of directional derivatives in topological vector spaces are compared. Directional derivatives in the sense of Gâteaux, Fréchet, and Hadamard are singled out from the general framework of \(\sigma\)-directional differentiability. It is pointed out that, in the case of finite-dimensional spaces and locally Lipschitz mappings, all these concepts of directional differentiability are equivalent. The chain rule for directional derivatives of a composite mapping is discussed.
Reviewer: A.Shapiro

49J52 Nonsmooth analysis
26B05 Continuity and differentiation questions
46G05 Derivatives of functions in infinite-dimensional spaces
49J50 Fréchet and Gateaux differentiability in optimization
Full Text: DOI
[1] Danskin, J. M.,The Theory of Max-Min and Its Applications to Weapons Allocation Problems, Springer, New York, New York, 1967. · Zbl 0154.20009
[2] Demyanov, V. F., andMalozemov, V. N.,Introduction to Minimax, Wiley, New York, New York, 1974.
[3] Demyanov, V. F., andVasilev, L. V.,Nondifferentiable Optimization, Nauka, Moscow, USSR, 1981.
[4] Pshenichnyi, B. N.,Necessary Conditions for an Extremum, Marcel Dekker, New York, New York, 1971.
[5] Ioffe, A. D., andTihomirov, V. M.,Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam, Holland, 1979. · Zbl 0407.90051
[6] Flett, T. M.,Differential Analysis, Cambridge University Press, Cambridge, England, 1980. · Zbl 0442.34002
[7] Clarke, F. H.,Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, New York, 1983. · Zbl 0582.49001
[8] Neustadt, L. W.,An Abstract Variational Theory with Applications to a Broad Class of Optimization Problems, I: General Theory, SIAM Journal on Control, Vol. 4, pp. 505-527, 1966. · Zbl 0166.09401
[9] Massam, H., andZlobec, S.,Various Definitions of the Derivative in Mathematical Programming, Mathematical Programming, Vol. 7, pp. 144-161, 1974. · Zbl 0296.90042
[10] Fiacco, A. V.,Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, New York, 1983. · Zbl 0543.90075
[11] Gauvin, J., andDubeau, F.,Differential Properties of the Marginal Function in Mathematical Programming, Mathematical Programming Study, Vol. 19, pp. 101-119, 1982. · Zbl 0502.90072
[12] Rockafellar, R. T.,Directional Differentiability of the Optimal Value Function in a Nonlinear Programming Problem, Mathematical Programming Study, Vol. 21, pp. 213-226, 1984. · Zbl 0546.90088
[13] Shapiro, A.,Second-Order Sensitivity Analysis and Asymptotic Theory of Parametrized Nonlinear Programs, Mathematical Programming, Vol. 33, pp. 280-299, 1985. · Zbl 0579.90088
[14] Shapiro, A.,Gâteaux, Fréchet, and Hadamard Directional Differentiability of Functional Solutions in Stochastic Programming, Mimeograph Series No. 395, Operations Research and Statistics, Technion, Haifa, Israel, 1988.
[15] Dupa?ová, J.,Stability in Stochastic Programming with Recourse, Contaminated Distributions, Mathematical Programming Study, Vol. 27, pp. 133-144, 1986. · Zbl 0594.90068
[16] Averbukh, V. I., andSmolyanov, O. G.,The Theory of Differentiation in Linear Topological Spaces, Russian Mathematical Surveys, Vol. 22, pp. 201-258, 1967. · Zbl 0312.46054
[17] Averbukh, V. I., andSmolyanov, O. G.,The Various Definitions of the Derivative in Linear Topological Spaces, Russian Mathematical Surveys, Vol. 23, pp. 67-113, 1968. · Zbl 0196.15702
[18] Nashed, M. Z.,Differentiability and Related Properties of Nonlinear Operators: Some Aspects of the Role of Differentials in Nonlinear Functional Analysis, Nonlinear Functional Analysis and Applications, Edited by L. B. Rall, Academic Press, New York, New York, pp. 103-309, 1971. · Zbl 0236.46050
[19] Yamamuro, S.,Differential Calculus in Topological Linear Spaces, Springer, Berlin, Germany, 1974. · Zbl 0276.58001
[20] Gil De Lamadrid, J.,Topology of Mappings and Differentiation Processes, Illinois Journal of Mathematics, Vol. 3, pp. 408-420, 1959. · Zbl 0116.32803
[21] Sebastião E Silva J.,Le Calcul Différentiel et Intégral dans les Espaces Localement Convèxes, Réels ou Complèxes, Parts 1 and 2, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche, e Naturali, Vol. 20, pp. 743-750, 1956 and Vol. 21, pp. 40-46, 1956. · Zbl 0072.13001
[22] Pallaschke, D., Recht, P., andUrbanski, R.,On Locally Lipschitz Quasidifferentiable Functions in Banach Spaces, Optimization, Vol. 17, pp. 287-295, 1986. · Zbl 0597.49011
[23] Robinson, S. M.,Local Structure of Feasible Sets in Nonlinear Programming, Part III: Stability and Sensitivity, Mathematical Programming Study, Vol. 30, pp. 45-66, 1987. · Zbl 0629.90079
[24] Sova, M.,General Theory of Differentiation in Linear Topological Spaces, Czechoslovak Mathematical Journal, Vol. 14, pp. 485-508, 1964. · Zbl 0171.35302
[25] Sova, M.,Conditions of Differentiability in Linear Topological Spaces, Czechoslovak Mathematical Journal, Vol. 16, pp. 339-362, 1966. · Zbl 0171.35303
[26] Ursescu, C.,Sur une Généralisation de la Notion de Différentiabilité, Atti della Accademia Nazionale dei Lincei, Classes di Scienze Fisiche, Matematiche, e Naturali, Vol. 54, pp. 199-204, 1973. · Zbl 0281.46038
[27] Demyanov, V. F., andRubinov, A. M.,On Quasidifferentiable Mappings, Optimization, Vol. 14, pp. 3-21, 1983. · Zbl 0517.90065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.