zbMATH — the first resource for mathematics

The Perron root of a weighted geometric mean of nonnegative matrices. (English) Zbl 0684.15007
For a nonnegative square matrix \(A=(\alpha_{ij}),\) let \(\rho\) (A) and M(A) denote the spectral radius of A and the matrix with diagonal entries \(\alpha_{ii}\) and off-diagonal entries \(-\alpha_{ij}\), respectively. Let \(\circ\) denote the entry-wise Hadamard product of matrices and for \(\alpha >0,\) let \(A^{(\alpha)}=(\alpha^{\alpha}_{ij}).\) The authors prove that for k nonnegative n-by-n matrices \(A_ 1,...,A_ k\) and for any k positive numbers \(\alpha_ 1,...,\alpha_ k\) such that \(\alpha_ 1+...+\alpha_ k\geq 1\) the inequality \(\rho (A_ 1^{(\alpha_ 1)}\circ...\circ A_ k^{(\alpha_ k)})\leq \rho (A_ 1)^{\alpha_ 1}...\rho (A_ k)^{\alpha_ k}\) holds. They discuss in detail the nontrivial equality case and convexity of the function \((\alpha_ 1,...,\alpha_ k)\to \rho (A_ 1^{(\alpha_ 1)}\circ...\circ A_ k^{(\alpha_ k)}).\) These results generalize the earlier results of A. J. Schwenk [Linear Algebra Appl. 75, 257-265 (1986; Zbl 0654.15011)] and S. Karlin and F. Ost [ibid. 68, 47-65 (1985; Zbl 0575.15006)]. They obtained also the dual inequality fo the least eigenvalues of M(A) and some other interesting inequalities or new proofs of known results.
Reviewer: Z.Dostal

15B48 Positive matrices and their generalizations; cones of matrices
15A45 Miscellaneous inequalities involving matrices
Full Text: DOI
[1] Beckenbach E.T., Inequalities (1965) · Zbl 0128.27401 · doi:10.1007/978-3-662-35199-4
[2] Berman A., Nonnegative Matrices in the Mathematical Sclences (1979)
[3] DOI: 10.1017/S0305004100056164 · Zbl 0415.60012 · doi:10.1017/S0305004100056164
[4] DOI: 10.1016/0022-247X(84)90198-7 · Zbl 0545.15008 · doi:10.1016/0022-247X(84)90198-7
[5] DOI: 10.1016/0024-3795(84)90020-X · Zbl 0547.15010 · doi:10.1016/0024-3795(84)90020-X
[6] Engel E.M., Czech. Math. J. 25 pp 389– (1975)
[7] DOI: 10.1080/03081088108817381 · Zbl 0462.15017 · doi:10.1080/03081088108817381
[8] DOI: 10.1016/0024-3795(86)90120-5 · Zbl 0588.15015 · doi:10.1016/0024-3795(86)90120-5
[9] Johnson C.R., Systems and Signal Processing
[10] DOI: 10.1016/0024-3795(85)90207-1 · Zbl 0575.15006 · doi:10.1016/0024-3795(85)90207-1
[11] DOI: 10.1093/qmath/12.1.283 · Zbl 0101.25302 · doi:10.1093/qmath/12.1.283
[12] DOI: 10.1016/0024-3795(86)90193-X · Zbl 0654.15011 · doi:10.1016/0024-3795(86)90193-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.