Ginzburg, David L-functions for \(SO_ n\times GL_ k\). (English) Zbl 0684.22009 J. Reine Angew. Math. 405, 156-180 (1990). We prove Langlands’ conjecture for the standard representation of the groups \(SO_{2n+1}\times GL_ k\) and \(SO_{2n}\times GL_ k\) where \(k<n\). We construct Rankin-Selberg integrals for these groups, prove their convergence, show that they are Euclidean and compute the unramified local integrals. These integrals are a natural generalization of the ones constructed for \(SO_{2n+1}\times GL_ n\) and \(SO_{2n}\times GL_ n\) be Gelbart and Piatetski-Shapiro. Reviewer: D.Ginzburg Cited in 2 ReviewsCited in 14 Documents MSC: 22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings 11F70 Representation-theoretic methods; automorphic representations over local and global fields 11R39 Langlands-Weil conjectures, nonabelian class field theory 11M06 \(\zeta (s)\) and \(L(s, \chi)\) 11R42 Zeta functions and \(L\)-functions of number fields Keywords:connected reductive algebraic group; automorphic cuspidal representation; Eisenstein series; Langlands’ conjecture; standard representation; Rankin-Selberg integrals; unramified local integrals PDF BibTeX XML Cite \textit{D. Ginzburg}, J. Reine Angew. Math. 405, 156--180 (1990; Zbl 0684.22009) Full Text: DOI Crelle EuDML