zbMATH — the first resource for mathematics

Perturbation by differences of unbounded potentials. (English) Zbl 0685.31005
Perturbation by unbounded potentials and corresponding eigenvalues are studied in the general framework of harmonic spaces. The results are applied to the Schrödinger equation \((\Delta -\mu)u=0\) on domains U in \({\mathbb{R}}^ n\), where \(\mu\) is a signed measure on \({\mathbb{R}}^ n\) such that \(\mu\) does not charge polar sets and \(\mu^-\) generates a finite potential.
Reviewer: W.Hansen

31C25 Dirichlet forms
35J10 Schrödinger operator, Schrödinger equation
Full Text: DOI EuDML
[1] Blanchard, P., Ma, Z.: New results on the Schr?dinger semigroups with potentials given by smooth measures, BiBoS preprint Nr. 308, 1988, to appear in Proc. Silivri Workshop 1988, Ed. Korezliglu et al., Lecture Notes in Mathematics, Springer 1989
[2] Bliedtner, J., Hansen, W.: Potential theory?an analytic and probabilistic approach to balayage. Universitext, Berlin Heidelberg New York: Springer 1986 · Zbl 0706.31001
[3] Boukricha, A., Hansen, W., Hueber, H.: Continuous solutions of the generalized Schr?dinger equation and perturbation of harmonic spaces. Expo. Math.5, 97-135 (1987) · Zbl 0659.35025
[4] Ben Saad, H., Janssen, K.: A characterization of parabolic potential theory. Math. Ann.272, 281-289 (1985) · Zbl 0571.31008 · doi:10.1007/BF01450572
[5] Feyel, D., de La Pradelle, A.: ?tude de l’?quation 1/2?u?u?=0 o? ? est une mesure positive. Ann. Inst. Fourier38, 199-218 (1988) · Zbl 0645.35018
[6] Hansen, W., Hueber, H.: Eigenvalues in potential theory. J. Differ. Equations73, 133-152 (1988) · Zbl 0647.35062 · doi:10.1016/0022-0396(88)90122-2
[7] Schaefer, H. H.: Topological vector spaces. (Grad. Texts Math. Berlin Heidelberg New York: Springer 1970
[8] Sturm, K.-T.: On the Dirichlet-Poisson problem for Schr?dinger operators. C. R. Math. Acad. Sci., Soc. R. Can.9, 149-154 (1987) · Zbl 0648.35024
[9] Sturm, K.-T.: Schr?dinger equations with discontinuous solutions. In: Potential theory, pp. 333-337. New York London: Plenum Press, 1988
[10] Sturm, K.-T.: St?rung von Hunt-Prozessen durch signierte additive Funktionale. Dissertation, Erlangen 1989 · Zbl 0692.60057
[11] Taylor, J.C.: On the existence of sub-Markovian resolvents. Invent. Math.17, 85-93 (1972) · Zbl 0229.31014 · doi:10.1007/BF01390026
[12] Widder: The Laplace transform. Princeton: Princeton University Press 1946
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.