×

zbMATH — the first resource for mathematics

Existence of bounded solutions for non linear elliptic unilateral problems. (English) Zbl 0687.35042
Let \(\Omega\) be a bounded domain in \({\mathbb{R}}^ n\), \(\psi\) a measurable function on \(\Omega\), \(p>1\), and \(A(u)=div a(x,u,Du)+a_ 0(x,u,Du)\) an elliptic quasilinear differential operator whose coefficients a, \(a_ 0\) satisfy natural regularity and growth conditions which in particular guarantee that A is a continuous, pseudomonotone operator from the Sobolev space \(W_ 0^{1,p}(\Omega)\) into its dual. The authors prove the existence of a solution \(u\in W_ 0^{1,p}(\Omega)\cap L^{\infty}(\Omega)\) of the variational inequality \(u\geq \psi\), \(<A(u),v-u>+\int H(x,u,Du)(v-u)dx\geq 0\) for all \(v\in W_ 0^{1,p}(\Omega)\cap L^{\infty}(\Omega)\) such that \(v\geq \psi\). Here it is important to notice that the inhomogeneous term H is allowed to grow like \(| Du|^ p\). The proof is carried out by an approximation of H by bounded functions \(H_{\epsilon}\) for which a solution \(u_{\epsilon}\) of the corresponding problem is known to exist. Then it is shown that the family \(u_{\epsilon}\) is compact in \(W_ 0^{1,p}(\Omega)\).
Reviewer: F.Tomi

MSC:
35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000)
47H05 Monotone operators and generalizations
35J65 Nonlinear boundary value problems for linear elliptic equations
35D05 Existence of generalized solutions of PDE (MSC2000)
49J40 Variational inequalities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amann, H.; Crandall, M. G., On some existence theorems for semilinear elliptic equa- tions, Indiana Univ. Math. J., 27, 779-790 (1978) · Zbl 0391.35030
[2] Boccardo, L., An L^s-estimate for the gradient of solutions of some nonlinear unilateral problems, Ann. Mat. Pura Appl., 141, 277-287 (1985) · Zbl 0599.49009
[3] Boccardo, L.; Murat, F.; Puel, J. P.; Brezis, H.; Lions, J. L., Existence de solutions faibles pour des équations elliptiques quasilinéaires à croissance quadratique, Konlinear partial differential equations and their applications, Collège de France Seminar, Vol. IV, 19-73 (1983), London: Pitman, London
[4] Boccardo, L.; Murat, F.; Puel, J. P., Résultats d’existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa, 11, 213-235 (1984) · Zbl 0557.35051
[5] Bensoussan, A.; Frehse, J., Nonlinear elliptic systems in stochastic game theory, J. reine ang. Math., 350, 23-67 (1984) · Zbl 0531.93052
[6] Bensoussan, A.; Frehse, J.; Mosco, U., A stochastic impulse control problem with quadratic growth Mamiltonian and the corresponding quasi-variational inequality, J. reine ang. Math., 331, 124-145 (1982) · Zbl 0474.49013
[7] Brezis, H., Equations et inéquations non linéaires dans les espaces en dualité, Ann. Inst. Fourier, 18, 115-175 (1968) · Zbl 0169.18602
[8] Brezis, H., Problèmes unilatéraux, J. Math. Pures et Appl., 51, 1-168 (1972) · Zbl 0237.35001
[9] Browder, F. E.; Chern, S. S.; Smale, S., Existence theorems for nonlinear partial differential equations, Proceedings of Symposia in Pure Mathematics, Vol. XVI, 1-60 (1970), Providence: American Mathematical Society, Providence
[10] Donato, P.; Giachetti, D., Quasilinear elliptic equations with quadratic growth in unbounded domains, Nonlinear Anal. T.M.A., 10, 8, 791-804 (1986) · Zbl 0602.35036
[11] Donato, P.; Giachetti, D., Unilateral problems with quadratic growth in unbounded domains, Boll. Un. Mat. Ital., (6), 5 A, 361-369 (1986) · Zbl 0602.49008
[12] Kinderlehrer, D.; Stampacchia, G., An introduction to variational inequalities and their applications (1980), New York: Academic Press, New York · Zbl 0457.35001
[13] Hartman, P.; Stampacchia, G., On some nonlinear elliptic differential functional equations, Acta Math., 115, 153-188 (1966) · Zbl 0142.38102
[14] Leray, J.; Lions, J. L., Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93, 97-107 (1965) · Zbl 0132.10502
[15] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Paris: Dunod et Gauthier Villars, Paris · Zbl 0189.40603
[16] Lions, P. L., Résolution de problèmes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74, 336-353 (1980) · Zbl 0449.35036
[17] Lions, P. L., Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre, J. Anal. Math., 45, 234-254 (1985) · Zbl 0614.35034
[18] J. M.Rakotoson - R.Temam,Relative rearrangement in quasilinear variational inequalities, to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.