On the compact non-nuclear operator problem. (English) Zbl 0687.47012

The problem reads: Let X, Y be two infinite dimensional Banach spaces.:
Does there always exist a compact non-nuclear operator f: \(X\to Y?\)
This question is settled in the negative by showing that any compact operator from Pisier’s space P into its dual \(P^*\) is nuclear. The result uses standard properties of Pisier’s space and an interesting approximation result.
Reviewer: K.John


47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
Full Text: DOI EuDML


[1] Davis, W., Johnson, W.B.: Compact, non-nuclear operators. Stud. Math.51, 81-85 (1974) · Zbl 0286.47015
[2] Diestel, J.: Sequences and series in Banach spaces. (Graduate texts in math. vol. 92) Berlin Heidelberg New York: Springer 1984 · Zbl 0542.46007
[3] Grothendieck, A.: Produits tensoriels topologiques espaces nucl?aires. Mem. Am. Math. Soc.16 (1955) · Zbl 0123.30301
[4] Grothendieck, A.: R?sum? de la th?orie m?trique des produits tensoriels topologiques. Bol. Soc. Mat. S?o Paulo8, 1-79 (1956)
[5] Jarchow, H.: On Hilbert-Schmidt spaces. Rend. Circ. Mat. Palermo (Suppl)II (2), 153-160 (1982) · Zbl 0503.46014
[6] Jarchow, H.: Locally convex spaces. Stuttgart: Teubner 1981 · Zbl 0466.46001
[7] John, K.: Tensor products and nuclearity. Lect. Notes Math., Vol. 991, pp. 124-129 Berlin Heidelberg New York: Springer 1983 · Zbl 0518.46054
[8] John, K.: Counterexample to a conjecture of Grothendieck. Math. Ann.265, 169-179 (1983) · Zbl 0515.46069
[9] John, K.: Tensor products of several spaces and nuclearity. Math. Ann.269, 333-356 (1984) · Zbl 0551.46051
[10] John, K.: Nuclearity and tensor products. Do?a Tr. J. Math.10, 125-135 (1986) · Zbl 0970.46511
[11] John, K.: Some remarks on the compact non-nuclear operator problem. Lond. Math. Soc. Lect. Note Ser.150, 140-144 (1989)
[12] John, K., Zizler, V.: Projections in dual weakly compactly generated Banach spaces. Stud. Math.49, 41-50 (1973) · Zbl 0247.46029
[13] Johnson, W.B.: On finite dimensional subspaces of Banach spaces with local unconditional structure. Stud. Math.51, 225-240 (1974) · Zbl 0301.46012
[14] Johnson, W.B., K?nig, H., Maurey, B., Retherford, R.: Eigenvalues ofp-summing andl p -type operators in Banach spaces. J. Funct. Anal.32, 353-380 (1979) · Zbl 0408.47019
[15] Kalton, N.J.: Spaces of compact operators. Math. Ann.208, 267-278 (1974) · Zbl 0273.47023
[16] Lindenstrauss, J.: On non-separable reflexive Banach spaces. Bull. Am. Math. Soc.72, 967-970 (1966) · Zbl 0156.36403
[17] Lindenstrauss, J., Pelczy?ski, A.: Absolutely summing operators in ? p -spaces and their application. Stud. Math.29, 275-326 (1968) · Zbl 0183.40501
[18] Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. I. Berlin Heidelberg New York: Springer 1977 · Zbl 0362.46013
[19] Niculescu, C.P.: New progress on ?(E,F)=N 1(E,F). An. Univ. Craiova, Ser. Mat. Fiz.-Chim.6, 27-29 (1978) · Zbl 0449.46022
[20] Pietsch, A.: Nuclear locally convex spaces. Berlin Heidelberg New York: Springer 1972 · Zbl 0308.47024
[21] Pietsch, A.: Operator ideals. Berlin: Deutscher Verlag der Wissenschaften 1978 · Zbl 0399.47039
[22] Pisier, G.: Un th?or?me sur les op?rateurs lin?aires entre espaces de Banach qui se factorisent par un espace de Hilbert. Ann. Sci. Ec. Norm. Sup?r., IV. S?r.13, 23-43 (1980) · Zbl 0436.47013
[23] Pisier, G.: Counterexamples to a conjecture of Grothendieck. Acta. Math.151, 180-208 (1983) · Zbl 0542.46038
[24] Pisier, G.: Factorization of linear operators and geometry of Banach spaces. CBMS Regional conference, series n0 60, AMS, 1-154 (1986)
[25] Singer, I.: Bases in Banach spaces. II. Berlin Heidelberg New York: Springer 1981 · Zbl 0467.46020
[26] Stegall, C.P., Retherford, J.R.: Fully nuclear and completely nuclear operators with applications to ?1 and ??-spaces. Trans. Am. Math. Soc.163, 457-492 (1972) · Zbl 0205.43003
[27] Tseitlin, I.I.: On a particular case of the existence of a compact operator which is not nuclear. Funkts. Anal. Prilozh6, 102 (1979)
[28] Tseitlin, I.I.: The extreme points of the unit ball of certain spaces of operators. Mat. Zametki20, 521-527 (1976)
[29] Ruess, W., Stegall, Ch.: Extreme points in duals of operator spaces. Math. Ann.261, 535-546 (1982) · Zbl 0501.47015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.