×

zbMATH — the first resource for mathematics

How close are time series to power tail Lévy diffusions? (English) Zbl 06876861
Summary: This article presents a new and easily implementable method to quantify the so-called coupling distance between the law of a time series and the law of a differential equation driven by Markovian additive jump noise with heavy-tailed jumps, such as \(\alpha\)-stable Lévy flights. Coupling distances measure the proximity of the empirical law of the tails of the jump increments and a given power law distribution. In particular, they yield an upper bound for the distance of the respective laws on path space. We prove rates of convergence comparable to the rates of the central limit theorem which are confirmed by numerical simulations. Our method applied to a paleoclimate time series of glacial climate variability confirms its heavy tail behavior. In addition, this approach gives evidence for heavy tails in datasets of precipitable water vapor of the Western Tropical Pacific.
©2017 American Institute of Physics

MSC:
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60J60 Diffusion processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Applebaum, D., Lévy Processes and Stochastic Calculus, (2009), Cambridge University Press
[2] Benzi, R.; Parisi, G.; Sutera, A.; Vulpiani, A., Stochastic resonance in climate change, Tellus, 34, 10-16, (1982)
[3] Berglund, N.; Landon, D., Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model, Nonlinearity, 25, 2303-2335, (2012) · Zbl 1248.60059
[4] Csörgö, M.; Horváth, C., On the distributions of Lp norms and weighted uniform empirical and quantile processes, Ann. Probab., 16, 1, 142-161, (1988) · Zbl 0646.62015
[5] Dijkstra, H. A., Nonlinear Climate Dynamics, (2013), Cambridge University Press · Zbl 1275.86001
[6] Ditlevsen, P. D., Observation of a stable noise induced millennial climate changes from an ice-core record, Geophys. Res. Lett., 26, 10, 1441-1444, (1999)
[7] Doss, C.; Thieullen, M., Oscillations and random perturbations of a FitzHugh-Nagumo system, (2009)
[8] Dudley, R. M., Uniform Central Limit Theorems, (1999), Cambridge University Press · Zbl 0951.60033
[9] Fuhrer, K.; Neftel, A.; Anklin, M.; Maggi, V., Continuous measurement of hydrogen-peroxide, formaldehyde, calcium and ammonium concentrations along the new GRIP Ice Core from Summit, Central Greenland, Atmos. Environ. Sect. A, 27, 1873-1880, (1993)
[10] Gairing, J., Speed of convergence of discrete power variations of jump diffusions, (2011), Humboldt-Universität zu Berlin
[11] Gairing, J.; Imkeller, P., Stable CLTs and rates for power variation of α-stable Lévy processes, Methodol. Comput. Appl. Probab., 17, 1, 1-18, (2013)
[12] Debussche, A.; Högele, M.; Imkeller, P., The Dynamics of Non-Linear Reaction-Diffusion Equations with Small Lévy Noise, 2085, (2013)
[13] Gairing, J.; Högele, M.; Kosenkova, T.; Kulik, A., Coupling distances between Lévy measures and applications to noise sensitivity of SDE, Stochastics Dyn., 15, 2, 1550009, (2015) · Zbl 1318.60054
[14] Gairing, J.; Högele, M.; Kosenkova, T.; Kulik, A., On the calibration of lévy driven time series with coupling distances with an application in paleoclimate, Springer-INdAM Series, 15, (2016), Springer: Springer, Milan/Heidelberg · Zbl 1366.62174
[15] Gairing, J.; Högele, M.; Kosenkova, T.
[16] Hasselmann, K., Stochastic climate models: Part I. Theory, Tellus, 28, 473-485, (1976)
[17] Hein, C.; Imkeller, P.; Pavlyukevich, I., Limit theorems for p-variations of solutions of SDEs driven by additive stable Lévy noise and model selection for paleo-climatic data, Interdiscip. Math. Sci., 8, 137-150, (2009)
[18] Högele, M.; Pavlyukevich, I., The exit problem from the neighborhood of a global attractor for heavy-tailed Lévy diffusions, Stochastic Anal. Appl., 32, 1, 163-190, (2014) · Zbl 1296.60150
[19] Imkeller, P.; Monahan, A., Conceptual stochastic climate models, Stochastics Dyn., 2, 311-326, (2002) · Zbl 1022.86001
[20] Imkeller, P., Energy balance models: Viewed from stochastic dynamics, Prog. Probab., 49, 213-240, (2001) · Zbl 0988.60064
[21] Imkeller, P.; von Storch, J.-S., Stochastic Climate Models. Progress in Probability Series, (2001), Springer Basel
[22] Imkeller, P.; Pavlyukevich, I., First exit times of SDEs driven by stable Lévy processes, Stochastic Process. Appl., 116, 4, 611-642, (2006) · Zbl 1104.60030
[23] Monahan, A. H.; Alexander, J.; Weaver, A. J., Stochastic models of meridional overturning circulation: Time scales and patterns of variablility, Philos. Trans. R. Soc. A, 366, 2527-2544, (2008) · Zbl 1153.86305
[24] Papanicolau, G. C.; Kohler, W., Asymptotic theory of mixing stochastic ordinary differential equations, Commun. Pure Appl. Math., XXVII, 641-668, (1974) · Zbl 0288.60056
[25] Pavlyukevich, I., First exit times of solutions of stochastic differential equations with heavy tails, Stochastics Dyn., 11, 2-3, 1-25, (2011)
[26] Peters, O.; Deluca, A.; Corral, A.; Neelin, J. D.; Holloway, C. E., Universality of rain event size distributions, J. Stat. Mech.: Theory Exp., 2010, (2010)
[27] Rachev, S. T.; Rüschendorf, L., Mass transportation problems. Vol. I: Theory, vol. II: applications, Probability and Its Applications, (1998), Springer-Verlag: Springer-Verlag, New York · Zbl 0990.60500
[28] Rahmstorf, S., Timing of abrupt climate change: a precise clock, Geophys. Res. Lett., 30, 1510, (2003)
[29] Sato, K., Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, (1999), Cambridge University Press · Zbl 0973.60001
[30] Stechmann, S. N.; Neelin, J. D., A stochastic model for the transition to strong convection, J. Atmos. Sci., 68, 2955-2970, (2011)
[31] Stechmann, S. N.; Neelin, J. D., First-passage-time prototypes for precipitation statistics, J. Atmos. Sci., 71, 3269-3291, (2014)
[32] Shen, X.; Zhang, H.; Xu, Y.; Meng, S., Observation of α-stable noise in the laser gyroscope data, IEEE Sens. J., 16, 1998-2003, (2016)
[33] Tuckwell, H. C.; Rodriguez, R.; Wan, F. Y. M., Determination of firing times for the stochastic Fitzhugh-Nagumo neuronal model, Neural Comput., 15, 143-159, (2003) · Zbl 1031.68100
[34] Xie, S., ARM climate modeling best estimate data: A new data product for climate studies, Bull. Am. Meteorol. Soc., 91, 13-20, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.