×

Floquet operators with singular spectrum. I. (English) Zbl 0689.34022

Let H be a positive definite, self-adjoint operator acting in a separable Hilbert space \({\mathcal H}\), having a discrete spectrum consisting of simple eigenvalues \(0<\lambda_ 0<\lambda_ 1<...\); let \(\{\) V(t)\(\}\) be a uniformly bounded measurable family of bounded operators which is periodic with period \(2\pi\), and define the Floquet operator \(K(\beta)=i(d/dt)+H+\beta V(t)\) on \({\mathcal K}=L_ 2[0,2a]\times {\mathcal H}\), with periodic boundary condition \(u(0)=u(2\pi)\). It is proved that if \(\lambda_{n+1}-\lambda_ n\) grows like \(n^{2+\epsilon}\) for some \(\epsilon >0\) then K(\(\beta)\) has a dense pure point spectrum for ‘almost every’ H in an appropriate probabilistic sense and for all \(\beta\).
Reviewer: W.D.Evans

MSC:

34L99 Ordinary differential operators
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] J. Bellissard , Stability and Instability in Quantum Mechanics in Trends and Developments in the Eighties , ALBEVARIO and BLANCHARD Eds., World Scientific , Singapore , 1985 . MR 853743 · Zbl 0584.35024
[2] J. Bellissard , Stability and Chaotic Behavior of Quantum Rotors in Stochastic Processes in Classical and Quantum Systems , S. ALBEVARIO, G. CASATI and D. MERLINI Eds., Lec. Notes in Phys. , Vol. 262 , 1986 , pp. 24 - 38 , Springer-Verlag , New York . MR 870160
[3] M. Combescure , The Quantum Stability Problem for Time-Periodic Perturbations of the Harmonic Oscillator , Ann. Inst. H. Poincaré , vol. 47 , 1987 , pp. 63 - 84 ; 451 - 4 . Numdam | MR 912757 | Zbl 0628.70017 · Zbl 0628.70017
[4] T. Kato , Wave Operators and Similarity for Sone Non-Self-Adjoint Operators , Math. Ann. , Vol. 162 , 1966 , pp. 258 - 279 . MR 190801 | Zbl 0139.31203 · Zbl 0139.31203 · doi:10.1007/BF01360915
[5] T. Kato , Perturbation Theory for Linear Operators , 1st edition, Springer-Verlag , New York , 1966 . MR 203473 | Zbl 0148.12601 · Zbl 0148.12601
[6] G. Hagadorn , M. Loss and J. Slawny , Non-Stochasticity of Time-Dependent Quadratic Hamiltonians and the Spectra of Transformations , J. Phys. A. , Vol. 19 , 1986 , pp. 521 - 531 . MR 833433 | Zbl 0601.70013 · Zbl 0601.70013 · doi:10.1088/0305-4470/19/4/013
[7] J.S. Howland , Scattering Theory for Hamiltonians Periodic in Time , Indiana J. Math. , Vol. 28 , 1979 , pp. 471 - 494 . MR 529679 | Zbl 0444.47010 · Zbl 0444.47010 · doi:10.1512/iumj.1979.28.28033
[8] J.S. Howland , Perturbation Theory of Dense Point Spectrum . J. Func. Anal. , Vol. 74 , 1987 , pp. 52 - 80 . MR 901230 | Zbl 0646.47011 · Zbl 0646.47011 · doi:10.1016/0022-1236(87)90038-3
[9] J.S. Howland , Random Perturbation Theory and Quantum Chaos in Differential Equations and Mathematical Physics , pp. 197 - 204 , I.W. Knowles and Y. Saito Eds., Lec. Notes in Math. , Vol. 1285 , Springer-Verlag , New York , 1987 . MR 921269 | Zbl 0623.34060 · Zbl 0623.34060
[10] J.S. Howland , A Localization Theorem for One-Dimensional Schroedinger Operators (to appear).
[11] M. Samuels , R. Fleckinger , L. Touzillier and J. Bellissard , The Rise of Chaotic Behavior in Quantum Systems and Spectral Transition , Europhys. Lett. , Vol. 1 , 1986 , pp. 203 - 208 .
[12] B. Simon and T. Wolff , Singular Continuous Spectrum Under Rank Are Perturbations and Localization for Random Hamiltonians , Comm. Pure Appl. Math. , Vol. 39 , 1986 , pp. 75 - 90 . MR 820340 | Zbl 0609.47001 · Zbl 0609.47001 · doi:10.1002/cpa.3160390105
[13] K. Yajima , Scattering Theory for Schroedinger Equation with Potential Periodic in Time , J. Math Soc. Japan , vol. 29 , 1977 , pp. 729 - 743 . Article | MR 470525 | Zbl 0356.47010 · Zbl 0356.47010 · doi:10.2969/jmsj/02940729
[14] J. Avron , R. Seiler and L.G. Yaffe , Adiabatic Theorems and Applications to the Quantum Hall Effect , Comm. Math. Phys. , Vol. 110 , 1987 , pp. 33 - 49 . Article | MR 885569 | Zbl 0626.58033 · Zbl 0626.58033 · doi:10.1007/BF01209015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.