On drilling degrees of freedom. (English) Zbl 0691.73015

The authors have investigated variational principles employing independent rotation fields. In the two-dimensional case these lead to membrane elements with ‘drilling degrees of freedom’ of practical use in shell analysis. It is argued that formulations employing ‘conventional’ displacement, rotations, and stress interpolations are doomed to failure. Identifying the difficulties, the authors propose a modified variational principle possessing the same Euler-Lagrange equations as Reinner’s, but with improved stability properties in the context of discrete approximations. Convenient interpolations are rendered convergent by the modified principle. Several other formulations are proposed and shown to be convergent for displacement/rotation interpolations of all orders.
Reviewer: P.Narain


74S30 Other numerical methods in solid mechanics (MSC2010)
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI


[1] Allman, D.J., A compatible triangular element including vertex rotations for plane elasticity analysis, Comput. & structures, 19, 1-5, (1984) · Zbl 0548.73049
[2] Allman, D.J., A quadrilateral finite element including vertex rotations for plane elasticity analysis, Internat. J. numer. meths. engrg., 26, 717-730, (1988) · Zbl 0633.73073
[3] Amara, M.; Thomas, J.M., Equilibrium finite elements for the linear plastic problem, Numer. math., 33, 367-383, (1979) · Zbl 0401.73079
[4] Arnold, D.N.; Brezzi, F.; Douglas, J., PEERS: A new mixed finite element for plane elasticity, Japan J. appl. math., 1, 347-367, (1984) · Zbl 0633.73074
[5] Bergan, P.G.; Felippa, C.A., A triangular membrane element with rotational degrees of freedom, Comput. meths. appl. mech. engrg., 50, 25-69, (1985) · Zbl 0593.73073
[6] Bergan, P.G.; Hanssen, L., A new approach for deriving ‘good’ finite elements, ()
[7] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO ser. rough anal. numér., R-2, 129-151, (1974) · Zbl 0338.90047
[8] F. Brezzi, J. Douglas Jr and D. Marini, Recent results on mixed finite element methods for second order elliptic problems, preprint. · Zbl 0611.65071
[9] Carpenter, N.; Stolarski, H.; Belytschko, T., A flat triangular shell element with improved membrane interpolation, Comm. appl. numer. meths., 1, 161-168, (1985) · Zbl 0582.73061
[10] Ciarlet, P.G., The finite element method for elliptic problems, () · Zbl 0285.65072
[11] Cook, R.D., On the allman triangle and a related quadrilateral element, Comput. & structures, 22, 1065-1067, (1986)
[12] Cook, R.D., A plane hybrid element with rotational d.o.f. and adjustable stiffness, Internat. J. numer. meths. engrg., 24, 1499-1508, (1987) · Zbl 0615.73084
[13] Gurtin, M.E., The linear theory of elasticity, (), 295
[14] Harder, R.L.; MacNeal, R.H., A new membrane option for the QUAD4, ()
[15] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, NJ
[16] Irons, B.; Ahmad, S., Techniques of finite elements, (1980), Ellis Horwood Chichester, U.K
[17] Jaamei, S.; Frey, F.; Jetteur, Ph., Nonlinear thin shell finite elements ith six degrees of freedom per node, () · Zbl 0665.73051
[18] Jetteur, Ph., A shallow shell element with in-plane rotational degrees of freedom, () · Zbl 0825.73786
[19] Jetteur, Ph., Improvement of the quadrangular JET shell element for a particular class of shell problems, ()
[20] Jetteur, Ph., Improvement and large rotations of the JET shell element in nonlinear analysis, () · Zbl 0825.73786
[21] Jetteur, Ph.; Frey, F., A four node Marguerre element for non-linear shell analysis, Engrg. comput., 3, 276-282, (1986)
[22] MacNeal, R.H., A theorem regarding the locking of tapered four-noded membrane elements, Internat. J. numer. meths. engrg., 24, 1793-1799, (1987) · Zbl 0625.73083
[23] MacNeal, R.H., Zen and the art of finite element design, Finite elements anal. design, 3, 85-91, (1987)
[24] MacNeal, R.H.; Harder, R.L., A refined four-noded membrane element with rotational degrees of freedom, Comput. & structures, 28, 75-88, (1988) · Zbl 0631.73064
[25] Reisnerr, E., A note on variational theorems in elasticity, Internat. J. solids and structures, 1, 93-95, (1965)
[26] Robinson, J.; Sheng, L.D., Some single element testing of Cook’s quadrilateral membrane with rotational degrees of freedom, Finite element news, 22-27, (February 1988)
[27] Stenberg, R., A family of mixed finite elementsfor the elasticity problem, ()
[28] Strang, G.; Fix, G.J., An analysis of the finite element method, () · Zbl 0278.65116
[29] Taylor, R.L.; Simo, J.C., Bending and membrane elements for analysis of thick and thin shells, () · Zbl 0535.73025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.