×

zbMATH — the first resource for mathematics

On a singular nonlinear Dirichlet problem. (English) Zbl 0692.35047
The authors are studying the existence of positive solutions of the semilinear equation \(\Delta u+g(x,u)+h(x,\lambda u)=0,\) with zero boundary data, in a boundary smooth domain in \({\mathbb{R}}^ n\). Here, \(\lambda\) is a positive bifurcation parameter. It is assumed that the functions g(x,u) and h(x,\(\lambda\) u) satisfy some conditions so that they resemble the behaviour of \(u^{-\alpha}\), \(\alpha >0\) and \((\lambda u)^ p\), \(p>0\) respectively. The authors proves existence/nonexistence results depending on the parameter \(\lambda\). The use upper and lower solution techniques.
Reviewer: H.Egnell

MSC:
35J65 Nonlinear boundary value problems for linear elliptic equations
35B32 Bifurcations in context of PDEs
35J70 Degenerate elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adamas, R.A. 1975. ”Sobolev Spaces”. New York-San Francisco - London: Academic Press.
[2] Agmon S, Ann. Sc. Norm. Sup. Pisa pp 405– (1959)
[3] DOI: 10.1512/iumj.1971.21.21012 · doi:10.1512/iumj.1971.21.21012
[4] DOI: 10.1080/03605307708820029 · Zbl 0362.35031 · doi:10.1080/03605307708820029
[5] Fulks W., Osaka Math J. 12 pp 1– (1960)
[6] DOI: 10.1137/0517096 · Zbl 0614.35037 · doi:10.1137/0517096
[7] Keller H. B., J. Math. Mech. 16 pp 1361– (1967)
[8] Ladyzenskaja, O.A. 1968. ”Equations aux dérivées partielles de type elliptique”. Paris: Dunod.
[9] DOI: 10.1007/BF01214274 · Zbl 0324.35037 · doi:10.1007/BF01214274
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.