zbMATH — the first resource for mathematics

Estimation for mixed exponential distributions under type-II progressively hybrid censored samples. (English) Zbl 06921430
Summary: The type-II progressively hybrid censoring scheme can be deemed as a mixture of type-II progressive and hybrid censoring schemes, which has been utilized to analyze lifetime data in the literature for exponential distribution and Weibull distribution and so on, where the experiment terminates at a pre-specified time. However, little attention has been paid to parametric estimation under this censoring scheme for the mixed exponential distribution (MED) model, which is an important model in life data analysis. Based on type-II progressively hybrid censored samples, the estimation problem of the MED is addressed. The closed form of maximum likelihood estimators (MLEs) of unknown parameters using the EM algorithm are obtained. Some Monte Carlo simulations are implemented and a real data set is analyzed to illustrate the performance of the proposed method.

62-XX Statistics
Full Text: DOI
[1] Abdel-Hamid, A. H.; AL-Hussaini, E. K., Progressive stress accelerated life tests under finite mixture models, Metrika, 66, 213-231, (2007) · Zbl 1433.62286
[2] Afify, W. M., Classical estimation of mixed Rayleigh distribution in type I progressive censored, J. Stat. Theory Appl., 10, 4, 619-632, (2011)
[3] Al-Hussaini, E. K., Bayesian prediction under a mixture of two exponential components model based on type I censoring, J. Appl. Statist. Sci., 8, 173-185, (1999) · Zbl 0916.62022
[4] Anduin, E. T., Bayesian estimation of mixed Weibull distributions, Reliab. Eng. Syst. Saf., 94, 2, 463-473, (2009)
[5] Asgharzadeh, J., Point and interval estimations for a generalized logistic distribution under progressive type-II censoring, Comput. Stat. Theory Methods, 35, 1685-1702, (2006) · Zbl 1105.62093
[6] Ashour, S. K., Bayesian estimation of mixed Weibull exponential in life testing, Appl. Stoch. Models Data Anal., 3, 1, 51-57, (1987) · Zbl 0613.62124
[7] Balakrishnan, N.; Aggarwala, R., Progressive censoring: theory, methods and applications, (2000), Birkhauser Boston
[8] Balakrishnan, N.; Habibi Rad, A.; Arghami, N. R., Testing exponentiality based on Kullback-Leibler information with progressively type-II censored data, IEEE Trans. Reliab., 56, 301-307, (2007)
[9] Balakrishnan, N.; Kannan, N.; Lin, C. T.; Wu, S. J., Inference for the extreme value distributions under progressive type-II censoring, J. Stat. Comput. Simul., 74, 25-45, (2004) · Zbl 1048.62090
[10] Balakrishnan, N.; Kundu, D., Hybrid censoring: models, inferential results and applications, Comput. Statist. Data Anal., 57, 166-209, (2013) · Zbl 1365.62364
[11] Basak, P.; Basak, I.; Balakrishnan, N., Estimation for the three-parameter lognormal distribution based on progressively censored data, Comput. Statist. Data Anal., 53, 10, 3580-3592, (2009) · Zbl 1453.62036
[12] Chen, D. G.; Lio, Y. L., Parameter estimations for generalized exponential distribution under progressive type-I interval censoring, Comput. Statist. Data Anal., 54, 1581-1591, (2010) · Zbl 1284.62595
[13] Childs, A.; Chandrasekar, B.; Balakrishnan, N., Exact likelihood inference for an exponential parameter under progressive hybrid censoring, Stat. Models Methods Biomed. Tech. Syst., 319-330, (2008)
[14] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B., 39, 1, 1-38, (1977) · Zbl 0364.62022
[15] Elsherpieny, E. A., Estimation of parameters of mixed generalized exponentionally distributions from censored type I samples, J. Appl. Sci. Res., 12, 1696-1700, (2007)
[16] Gupta, R. D.; Kundu, D., Exponentiated exponential family: an alternative to gamma and Weibull distributions, Comput. Statist. Data Anal., 43, 1, 117-130, (2001) · Zbl 0997.62076
[17] Ismail, A. A., Inference in the generalized exponential distribution under partially accelerated tests with progressive type-II censoring, Adv. Sci. Lett., 59, 1, 49-56, (2012)
[18] Jaheen, Z. F., On record statistics from a mixture of two exponential distributions, J. Stat. Comput. Simul., 75, 1, 1-11, (2005) · Zbl 1059.62052
[19] Jones, P. W.; Ashour, S. K., Maximum likelihood estimation of parameters in mixed Weibull distribution with equal shape parameter from complete and censored type I samples, Egyptian Statist. J., 20, 1-11, (1976)
[20] Jones, P. W.; Ashour, S. K., Bayesian estimation of the parameters of the mixed exponential distribution from censored samples, Biom. J., 18, 8, 633-637, (2007) · Zbl 0347.62034
[21] Kundu, D.; Joarder, A., Analysis of the type-II progressively hybrid censored data, Comput. Statist. Data Anal., 50, 2509-2528, (2006) · Zbl 1284.62605
[22] Lin, C. T.; Chou, C. C.; Huang, Y. L., Inference for Weibull distribution with progressively hybrid censoring, Comput. Statist. Data Anal., 56, 3, 451-467, (2012) · Zbl 1316.62042
[23] Lin, C. T.; Huang, Y. L., On progressive hybrid censored exponential distribution, J. Stat. Comput. Simul., 82, 5, 689-709, (2012) · Zbl 1432.62332
[24] Linhart, H.; Zucchini, w., Model selection, (1986), Wiley Newyork · Zbl 0665.62003
[25] Mclachlan, G.; Peel, D., Finite mixture models, (2000), Wiley Interscience New York · Zbl 0963.62061
[26] Mendenhall, W.; Hader, R. R., Estimation of parameters of mixed exponentially distributed failure time distribution from censored life test data, Biometrika, 45, 504-520, (1958) · Zbl 0088.12302
[27] Mokhtari, E. M.; Rad, A. H.; Yousefzadeh, F., Inference for Weibull distribution based on progressively type-II hybrid censored data, J. Statist. Plann. Inference, 141, 2824-2838, (2011) · Zbl 1213.62034
[28] Ng, H. K.T.; Kundu, D.; Chan, P. S., Statistical analysis of under an adaptive type-II progressive censoring scheme, Naval Res. Logist., 56, 687-698, (2009) · Zbl 1178.62111
[29] Raqab, M. Z.; Asgharzadeh, A.; Valiollahi, R., Prediction for Pareto distribution based on progressively type-II censored samples, Comput. Statist. Data Anal., 54, 1732-1743, (2010) · Zbl 1284.62608
[30] Raqab, M. Z.; Madi, M. T., Inference for the generalized Rayleigh distribution based on progressively censored data, J. Statist. Plann. Inference, 141, 3313-3332, (2011) · Zbl 1216.62151
[31] Solimana, A. A., Estimators estimators for the finite mixture of Rayleigh model based on progressively censored data, Comm. Statist. Theory Methods, 35, 5, 803-820, (2006) · Zbl 1093.62091
[32] Sultan, K. S.; Ismail, M. A.; Al-Moisheer, A. S., Mixture of two inverse Weibull distribution: properties and estimation, Comput. Statist. Data Anal., 51, 5377-5387, (2007) · Zbl 1445.62027
[33] Tian, Y. Z.; Tian, M. Z.; Zhu, Q. Q., Estimating a finite mixed exponential distribution under progressively type-II censored data, Comm. Statist. Theory Methods, 43, 17, 3762-3776, (2014) · Zbl 1302.62222
[34] Wang, B. X., Interval estimation for exponential progressive type-II censored step-stress accelerated life-testing, J. Statist. Plann. Inference, 140, 2706-2718, (2010) · Zbl 1188.62295
[35] Wu, S. J.; Chang, C. T., Inference in the Pareto distribution based on progressive type-II censoring with random removal, J. Appl. Stat., 30, 163-172, (2003) · Zbl 1121.62517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.