On the bound states of the nonlinear Schrödinger equation with a linear potential. (English) Zbl 0694.35202

Summary: We study the nonlinear Schrödinger equation with an “attractive” linear potential: \[ i\phi_ t=-\Delta \phi +(V(x)-| \phi |^{2\sigma})\phi,\quad 0<\sigma <2/(n-2)\quad (NLS), \] which arises in the mathematical description of phenomena in nonlinear optics and plasma physics.
Nonlinear bound states are finite energy localized solutions which, if dynamically stable, play an important role in the structure of general solutions of NLS. We discuss the existence and nonlinear orbital stability of nonlinear ground states of NLS. In particular, if \(-\Delta +V\) supports a linear bound state, then NLS has stable nonlinear ground states in the supercritical and critical cases (\(\sigma\geq 2/n)\), where blow-up (self-focusing or collapse) can occur. This is a phenomenon not present in the case where \(V\equiv 0\). In addition, island of stability in the regime of large \(H^ 1\) norm exist.


35Q99 Partial differential equations of mathematical physics and other areas of application
35A15 Variational methods applied to PDEs
35J10 Schrödinger operator, Schrödinger equation
Full Text: DOI


[1] Berestycki, H.; Cazenave, T., Instabilite des etas stationnaires dans LES equations de Schrödinger et de Klein-Gordon nonlinearities, C.R. acad. sci., 293, 489-492, (1981) · Zbl 0492.35010
[2] Berestycki, H.; Lions, P.L., Nonlinear scalar field equations I-II, (), 313-345 · Zbl 0533.35029
[3] J.L. Bona, P. Souganidis and W.A. Strauss, Stability and instability of solitary waves, preprint. · Zbl 0648.76005
[4] Cazenave, T., Stable solutions of the logarithmic Schrödinger equation, Nonlinear anal. TMA, 7, 1127-1140, (1983) · Zbl 0529.35068
[5] Chiao, R.Y.; Garmire, E.; Townes, C.H., Self-trapping of optical beams, Phys. rev. lett., 13, 479-482, (1964)
[6] Cazenave, T.; Lions, P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. math. phys., 85, 549-561, (1982) · Zbl 0513.35007
[7] Doolen, G.D.; Dubois, D.F.; Rose, H.A., Nucleation of cavitons in strong Langmuir turbulence, Phys. rev. lett., 54, 804-807, (1985)
[8] Floer, A.; Weinstein, A., Non-spreading of wave packets for the cubic Schrödinger equation, J. func. anal., 69, 397-408, (1986) · Zbl 0613.35076
[9] Glassey, R.T., On the blowing up of solutions to the Cauchy problem for the nonlinear Schrödinger equation, J. math. phys., 18, 1794-1797, (1977) · Zbl 0372.35009
[10] Grillakis, M., Linearized instability of nonlinear Schrödinger and nonlinear Klein-Gordon equations, (1987), preprint
[11] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry I, (1987), preprint · Zbl 0656.35122
[12] Ginibre, J.; Velo, G., On a class of nonlinear Schrödinger equations I, the Cauchy problem, general case, J. func. anal., 32, 1-32, (1979) · Zbl 0396.35028
[13] Jones, C.K.R.T.; Küpper, T., On the infinitely many solutions of a semilinear elliptic equation, SIAM J. math. anal., (1987)
[14] Lions, P.L., The concentration-compactness principle in the calculus of variations. the locally compact case I, II, Anal. I.H.P. anal. nonlineaire, (1984) · Zbl 0704.49004
[15] Laedke, E.W.; Spatschek, K.H., Stable three-dimensional envelope solitons, Phys. rev. lett., 52, 270-282, (1984) · Zbl 0542.76028
[16] Nirenberg, L., Topics in nonlinear functional analysis, Courant institute lecture notes, (1974) · Zbl 0286.47037
[17] Russell, D.; DuBois, D.F.; Rose, H.A., Collapsing caviton turbulence in one dimension, Phys. rev. lett., 56, 838, (1986)
[18] Russell, D.; DuBois, D.F.; Rose, H.A., Nucleation in two-dimensional Langmuir turbulence, Los alamos report, (1987)
[19] H.A. Rose, M.I. Weinstein, D.F. DuBois and D. Russell, in preparation.
[20] Reed, M.; Simon, B., Methods of modern mathematical physics IV: analysis of operators, (1978), Academic Press New York · Zbl 0401.47001
[21] Strauss, W., Dispersion of low-energy waves for two conservative equations, Arch. rat. mech. anal., 55, 86-92, (1974) · Zbl 0289.35048
[22] Strauss, W., Existence of solitary waves in higher dimensions, Commun. math. phys., 55, 149-162, (1977) · Zbl 0356.35028
[23] Shatah, J.; Strauss, W.A., Instability of nonlinear bound states, Commun. math. phys., 100, 173-190, (1985) · Zbl 0603.35007
[24] Schochet, S.H.; Weinstein, M.I., The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Commun. math. phys., 106, 569-580, (1986) · Zbl 0639.76054
[25] Vlasov, V.N.; Petrishchev, I.A.; Talanov, V.I., Izv. rad., 14, 1353, (1971)
[26] Weinstein, M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. math. phys., 87, 567-576, (1983) · Zbl 0527.35023
[27] Weinstein, M.I., Modulation stability of ground states of nonlinear Schrödinger equations, SIAM J. math. anal., 16, 472-490, (1985) · Zbl 0583.35028
[28] Weinstein, M.I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. pure appl. math., 39, 51-68, (1986) · Zbl 0594.35005
[29] Weinstein, M.I., Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Commun. partial diff. eqn., 12, 1133-1173, (1987) · Zbl 0657.73040
[30] Weinstein, M.I., Remarks on the Morse index of nonlinear ground states, (1987), preprint
[31] Zakharov, V.E., Collapse of Langmuir waves, Sov. phys. JETP, 35, 908-912, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.