Danilov, V. G.; Maslov, V. P. Asymptotics of reaction-diffusion equations. (Russian) Zbl 0695.35101 Mat. Zametki 44, No. 1, 152-153 (1988). Consider the Cauchy problem for the reaction-diffusion equation \[ \epsilon \partial u/\partial t-\epsilon^ 2(\partial /\partial x)(\lambda (x,t)\partial u/\partial x)-\gamma (x,t)F(u)=0, \]\[ u=u(x,t,\epsilon)_{t=0}=\psi (x/\epsilon,x),\quad \lambda,\gamma \geq \delta >0,\quad \lambda,\gamma f\in C^{\infty}. \] The existence of asymptotics of solution of this problem is proved. Reviewer: J.H.Tian MSC: 35K57 Reaction-diffusion equations 35B40 Asymptotic behavior of solutions to PDEs Keywords:Cauchy problem; asymptotics PDF BibTeX XML Cite \textit{V. G. Danilov} and \textit{V. P. Maslov}, Mat. Zametki 44, No. 1, 152--153 (1988; Zbl 0695.35101) OpenURL