×

zbMATH — the first resource for mathematics

Structural stability of the Korteweg-de Vries solitons under a singular perturbation. (English) Zbl 0695.35161
Summary: We investigate the stability of a solitary wave solution of the Korteweg- de Vries equation \[ \delta^ 2u_{5x}+u_{3x}+6uu_ x+u_ t=0, \] when a fifth order spatial derivative term is added. We show that the solution ceases to be strictly localized but develops an infinite oscillating tail and we compute the amplitude of the latter.

MSC:
35Q99 Partial differential equations of mathematical physics and other areas of application
35B35 Stability in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zufiria, J.A.; Saffmann, P.G., Stud. appl. math., 74, 259, (1985)
[2] Tanaka, M., Phys. fluids, 29, 650, (1986)
[3] Kruskal, M.D.; Segur, H., ARAP tech. memo 85-25, Phys. rev. lett., 58, 747, (1987)
[4] Pokrovskii, V.L.; Khalatnikov, J.M., Sov. phys. JETP, 13, 1207, (1961)
[5] Dombre, T.; Hakim, V.; Pomeau, Y., C.R. acad. sci., 302, 803, (1986)
[6] Combescot, R.; Dombre, T.; Hakim, V.; Pomeau, Y.; Pumir, A., Phys. rev. lett., 56, 2036, (1986)
[7] Su, C.H.; Mirie, R.M.; Su, C.H.; Mirie, R.M., J. fluid mech., J. fluid mech., 115, 475, (1982)
[8] Zou, Q.; Su, C.H., Phys. fluids, 29, 2113, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.