zbMATH — the first resource for mathematics

The generalized André systems $$A(F,\Gamma,(g_ i),(f_ i),\in)$$. (English) Zbl 0695.51001
Given a field $$Q=(Q,+,\cdot)$$, a map $$\phi$$ : $$Q^*\to Aut Q$$; $$x\to \phi_ x$$ $$(Q^*:=Q\setminus \{0\}$$, Aut Q: group of automorphisms of Q) is called an automorphic derivation map of Q, if $$\phi_ 1=id$$ and for every pair (a,b) of elements of $$Q^*$$ there exists one and only one $$x\in Q^*$$ with $$x\phi_ x(a)=b$$. Defining $$a\circ b:=a\phi_ a(b)$$ if $$a\neq 0$$ and $$0\circ b=0$$, $$Q^{\phi}:=(Q,+,\circ)$$ becomes a quasifield, often called a generalized André-system, i.e. $$(Q,+)$$ is an abelian group, $$(Q^*,\circ)$$ is a loop with identity 1, $$0\circ a=0$$ and $$a\circ (b+c)=a\circ b+a\circ c$$ for all a,b,c$$\in Q$$. A quasifield is said to be planar, if the equation $$a\circ x=b\circ x+c$$ has a solution whenever $$a\neq b$$. Planarity is necessary and sufficient for quasifields to coordinatize translation planes. The authors call planar quasifields simply quasifields, while not necessarily planar quasifield are attributed weak. They give a slightly circumstantial proof of the fact that $$Q^{\phi}$$ is planar and that the fixed field K of $$\phi (Q^*)$$ in Q equals the kernel of Q if Q is algebraic over K.
An extensive class of automorphic derivations is defined. After some remarks how to construct explicitly derivations of this kind, the authors proceed in showing that the following known classes of quasifields are contained in their class: Lüneburg’s generalization of André- quasifields, $$Q^{\phi}$$ whenever Q/K is a cyclic extension of prime power degree, the finite Dickson-nearfields and the class of finite quasifields $$Q_ g$$ constructed by Foulser.
The last section deals with the collineation groups of the corresponding translation planes in certain special cases.
Reviewer: H.Kiechle

MSC:
 51A25 Algebraization in linear incidence geometry 12K99 Generalizations of fields 51A40 Translation planes and spreads in linear incidence geometry
Full Text:
References:
 [1] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z.60 (1954), 156–186. · Zbl 0056.38503 · doi:10.1007/BF01187370 [2] A. Caggegi, Piani di André generalizzati, Rend. Circ. Mat. Palermo (2)25 (1976), 213–233. · Zbl 0381.51004 · doi:10.1007/BF02849509 [3] A. Caggegi, Sui piani di André generalizzati di dimensione 2(2n + 1), Rend. Circ. Mat. Palermo (2)33 (1984), 85–98. · Zbl 0542.51007 · doi:10.1007/BF02844413 [4] A. Caggegi, Some new generalized André systems, J. Geom.28 (1987), 145–188. · Zbl 0617.51002 · doi:10.1007/BF01221942 [5] P.M. Cohn, Algebra, vol. 2. New York – Toronto: J. Wiley 1979. [6] P. Dembowski, Finite Geometries, Berlin – Heidelberg – New York: Springer 1968. [7] L. E. Dickson, On finite algebras, Nachr. Akad. Wiss. Göttingen Math. – Phys. II (1905), 358–393. · JFM 36.0138.03 [8] D.A. Foulser, A generalization of André’s systems, Math. Z.100 (1967), 380–395. · Zbl 0152.18903 · doi:10.1007/BF01110421 [9] D.R. Hughes andF. Piper, Projective Planes, Berlin – Heidelberg – New York: Springer 1982. [10] H. Lüneburg, Translation Planes, Berlin – Heidelberg – New York: Springer 1980 [11] M. L. N. Rao andJ. L. Zemmer, A question of Foulser on $$\Lambda$$-systems of characteristic two, Proc. Amer. Math. Soc.21 (1969), 373–378. · Zbl 0174.23701 · doi:10.2307/2037007 [12] R. Rink, Eine Klasse unendlicher verallgemeinerter André-Ebenen, Geom. Dedicata 6 (1977). 55–80. · Zbl 0363.50013 · doi:10.1007/BF00181581
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.