×

zbMATH — the first resource for mathematics

On Hosszú’s functional inequality. (English) Zbl 0697.39014
The authors prove that every continuous and concave function f: (0,1)\(\to {\mathbb{R}}\) satisfies Hosszu’s inequality \[ (1)\quad f(x+y-xy)+f(xy)\leq f(x)+f(y). \] Moreover, if \(a\in [23/16,3/2)\), then the function f defined on (0,1) by \(f(x)=-x^ 4+2x^ 3-ax^ 2\) is a continuous solution of (1) and f is not concave.
Reviewer: M.C.Zdun

MSC:
39B72 Systems of functional equations and inequalities
PDF BibTeX XML Cite