×

zbMATH — the first resource for mathematics

Localization and standard modules for real semisimple Lie groups. I: The duality theorem. (English) Zbl 0699.22022
Let G be a connected semisimple real matrix group with maximal compact subgroup K. In this paper, the authors are concerned with relating two fundamental constructions of standard Harish-Chandra modules, each of which is closely related to the flag variety \({\mathcal B}\) of G.
On the one hand, we have the Beilinson-Bernstein modules \(H^ q({\mathcal B},j_+({\mathcal O}_ Q({\mathcal F})))\) which arise via the \({\mathcal D}\)-module push-forward of a \(K_ C\)-homogeneous line bundle \({\mathcal F}\) along the \(K_ C\)-orbit Q. Here \({\mathcal D}\) is a q-equivariant twisted sheaf of differential operators on \({\mathcal B}\) which, when restricted to Q, acts on the sections of \({\mathcal F}\). These push-forwards may have higher cohomology groups, each of which is a Harish-Chandra module. What we have just described are the Beilinson-Bernstein modules corresponding to the data (Q,\({\mathcal F},{\mathcal D},q).\)
On the other hand, consider triples (S,\({\mathcal E},q)\), where S is a G- orbit in \({\mathcal B}\), \({\mathcal E}\) is a G-homogeneous line bundle on S and q is an integer. This datum corresponds to a standard Zuckerman module in degree q.
By work of Matsuki, there is an order reversing bijective pairing between G-orbits and \(K_ C\)-orbits. Suppose S is a G-orbit dual to the \(K_ C\)-orbit \(Q_ S\). This pairing can be extended to make the correspondence (S,\({\mathcal E})\to (Q_ S,{\mathcal F}_{{\mathcal E}},{\mathcal D}_{{\mathcal E}})\) bijective, where \({\mathcal D}_{{\mathcal E}}\) is determined \({\mathcal E}\). The main theorem of this paper is the duality theorem: The Beilinson-Bernstein module attached to \((Q_ S,{\mathcal F}_{{\mathcal E}},{\mathcal D}_{{\mathcal E}},q)\) is canonically dual, in the category of Harish-Chandra modules, to the standard Zuckerman module attached to (S,\({\mathcal E}^*\otimes \Omega_{{\mathcal B}},s-q)\), where \(s=\dim_{{\mathbb{R}}}(Q_ S\cap S)-\dim_{{\mathbb{C}}}(Q_ S)\). In a future Part II of this paper, the authors plan to use the duality theorem to relate the Langlands classification, the Vogan-Zuckerman classification and the Beilinson-Bernstein classification directly and explicitly.

MSC:
22E46 Semisimple Lie groups and their representations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Beilinson, A., Bernstein, J.: Localisation de g-modules. C. R. Acad. Sci. Paris, Ser. I292, 15–18 (1981) · Zbl 0476.14019
[2] Beilinson, A., Bernstein, J.: A generalization of Casselman’s submodule theorem. In: Representation theory of reductive groups, Progress in Mathematics, vol. 40, pp. 35–52. Boston: Birkhäuser 1983 · Zbl 0526.22013
[3] Bialynicki-Birula, A.: On homogeneous affine spaces of linear algebraic groups. Am. J. Math.85, 577–582 (1963) · Zbl 0116.38202 · doi:10.2307/2373109
[4] Borel, A.: Linear algebraic groups. New York: Benjamin 1969 · Zbl 0206.49801
[5] Borel, A., et al.: AlgebraicD-modules. Boston-New York: Academic Press 1986
[6] Brylinski, J.L., Kashiwara, M.: Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math.64, 387–410 (1981) · Zbl 0473.22009 · doi:10.1007/BF01389272
[7] Bourbaki, N.: Algébre, Ch. I–X. Paris: Masson 1980–1981
[8] Bourbaki, N.: Groupes et algébres de Lie, Ch. I–VIII. Paris: Masson 1981
[9] Cartan, H., Eilenberg, S.: Homological algebra. Princeton: Princeton University Press 1956 · Zbl 0075.24305
[10] Dixmier, J.: Enveloping algebras. Amsterdam: North-Holland 1977 · Zbl 0346.17010
[11] Enright, T.J., Wallach, N.R.: Notes on homological algebra and representations of Lie algebras. Duke Math. J.47, 1–15 (1980) · Zbl 0429.17012 · doi:10.1215/S0012-7094-80-04701-8
[12] Grothendieck, A.: Sur quelques points d’algébre homologique. Tôhoku Math. J.9, 119–221 (1957) · Zbl 0118.26104
[13] Hochschild, G.: Introduction to affine algebraic groups. San Francisco: Holden-Day 1971 · Zbl 0221.20055
[14] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math.53, 165–184 (1979) · Zbl 0499.20035 · doi:10.1007/BF01390031
[15] Langlands, R.P.: On the classification of irreducible representations of real algebraic groups, mimeographed notes. Institute for Advanced Study, 1973
[16] Lusztig, G., Vogan, D.: Singularities of closures ofK-orbits on flag manifolds. Invent. Math.71, 365–379 (1983) · Zbl 0544.14035 · doi:10.1007/BF01389103
[17] Matsuki, T.: The orbits of affine symmetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan31, 332–357 (1979) · Zbl 0396.53025 · doi:10.2969/jmsj/03120331
[18] Miličić D.: Localization and representation theory of reductive Lie groups mimeographed notes; to appear
[19] Miličić D., Taylor, J.L.: Localization and coherent continuation. (Preprint)
[20] Mumford, D.: Geometric invariant theory. Ergebnisse der Mathematik, Band 34. Berlin-Heidelberg-New York: Springer Berlin 1965 · Zbl 0147.39304
[21] Schmid, W.: Recent developments in representation theory. In: Proceedings of Arbeitstagung, Bonn 1984, Lect. Notes Math., vol. 1111 pp 135–153. Berlin-Heidelberg-New York-Tokyo: Springer 1985
[22] Vogan, D.: Representations of real reductive Lie groups. Progress in Mathematics, vol. 15. Boston: Birkhäuser 1981 · Zbl 0469.22012
[23] Vogan, D.: Irreducible characters of semisimple Lie groups III: proof of the Kazhdan-Lusztig conjectures in the integral case. Invent. Math.71, 381–417 (1983) · Zbl 0505.22016 · doi:10.1007/BF01389104
[24] Wolf, J.A.: Finiteness of orbit structure for real flag manifolds. Geom. Dedicata3, 377–384 (1974) · Zbl 0297.22010 · doi:10.1007/BF00181328
[25] Wolf, J.A.: Unitary representations on partially holomorphic cohomology spaces. Mem. Amer. Math. Soc.138 (1974) · Zbl 0288.22022
[26] Zuckerman, G.J.: Geometric methods in representation theory. In: Representation theory of reductive groups, Progress in Mathematics, vol. 40, pp. 283–290. Boston: Birkhäuser 1983
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.