zbMATH — the first resource for mathematics

Averaging using elliptic functions: Approximation of limit cycles. (English) Zbl 0699.34032
Summary: We apply the method of averaging to first order in the small parameter \(\epsilon\) to the autonomous system \(x''+\alpha x+\beta x^ 3+\epsilon g(x,x')=0\) where we do not consider \(\beta\) as small. This involves perturbing off of Jacobian elliptic functions, rather than off of trigonometric functions as is usually done. The resulting equations involve integrals of elliptic functions which are evaluated using a program written in the computer algebra system MACSYMA. The results are applied to the problem of approximating limit cycles in the above differential equation.

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C29 Averaging method for ordinary differential equations
34-04 Software, source code, etc. for problems pertaining to ordinary differential equations
Full Text: DOI
[1] Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Appl. Math. Sciences 42. New York: Springer-Verlag 1983. · Zbl 0515.34001
[2] Hagedorn, P.: Non-linear oscillations. New York: Oxford University Press 1982. · Zbl 0629.70016
[3] Kevorkian, J., Cole, J. D.: Perturbation methods in applied mathematics. Appl. Math. Sciences 34. New York: Springer-Verlag 1981. · Zbl 0456.34001
[4] Minorsky, N.: Nonlinear oscillations. New York: van Nostrand 1962. · Zbl 0102.30402
[5] Nayfeh, A.: Perturbation methods. New York: Wiley-Interscience 1973. · Zbl 0265.35002
[6] Nayfeh, A., Mook, D. T.: Nonlinear oscillations. New York: John Wiley and Sons 1979. · Zbl 0418.70001
[7] Rand, R. H., Armbruster, D.: Perturbation methods, bifurcation theory and computer algebra. Appl. Math. Sciences 65. New York: Springer-Verlag 1987. · Zbl 0651.34001
[8] Sanders, J. A., Verhulst, F.: Averaging methods in nonlinear dynamical systems. Appl. Math. Sciences 59. New York: Springer-Verlag 1985. · Zbl 0586.34040
[9] Stoker, J. J.: Nonlinear vibrations. New York: Wiley 1950. · Zbl 0035.39603
[10] Kuzmak, G. E.: Asymptotic solutions of nonlinear second order differential equations with variable coefficients. P. M. M. (English translation)23 (3), 515-526 (1959). · Zbl 0089.29803
[11] Garcia-Margallo, J., Bejarano, J.: Stability of limit cycles and bifurcations of generalized van der Pol oscillators, preprint. · Zbl 1235.34096
[12] Chirikov, B. V.: A universal instability of many dimensional oscillator systems. Phys. Reports52, 263-379 (1979). · doi:10.1016/0370-1573(79)90023-1
[13] Davis, H. T.: Introduction to nonlinear differential and integral equations. New York: Dover 1962. · Zbl 0106.28904
[14] Cap, F. F.: Averaging methods for the solution of non-linear differential equations with periodic non-harmonic solutions. Int. J. Nonlinear Mech.9, 441-450 (1973). · Zbl 0294.70024 · doi:10.1016/0020-7462(74)90010-9
[15] Pocobelli, G.: Electron motion in a slowly varying wave. Phys. Fluids24 (12), 2173-2176 (1981). · Zbl 0476.76111 · doi:10.1063/1.863333
[16] Greenspan, B., Holmes, P.: Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators. SIAM J. Math. Anal.15 (1), 69-97 (1983). · Zbl 0547.34028 · doi:10.1137/0515003
[17] Garcia-Margallo, J., Bejarano, J.: A generalization of the method of harmonic balance. J. Sound Vib.116 (3), 591-595 (1987). · Zbl 1235.70148 · doi:10.1016/S0022-460X(87)81390-1
[18] Yuste, S., Bejarano, J.: Construction of approximate analytical solutions to a new class of nonlinear oscillator equations. J. Sound Vib.110 (2), 347-350 (1986). · Zbl 1235.70146 · doi:10.1016/S0022-460X(86)80215-2
[19] Byrd, P., Friedman, M.: Handbook of elliptic integrals for engineers and scientists. Berlin: Springer-Verlag 1954. · Zbl 0213.16602
[20] Coppola, V. T.: Averaging of strongly nonlinear oscillators using elliptic functions. PhD. disserdation, Ithaca N.Y.: Cornell University 1989.
[21] Goldstein, H.: Classical mechanics, 2nd ed., Reading: Addison-Wesley 1980. · Zbl 0491.70001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.