×

The Galerkin gradient least-squares method. (English) Zbl 0699.65077

The Galerkin gradient least-squares method introduced by T. J. R. Hughes and A. Brooks [Finite element methods for convection dominated flows, Winter ann. Meet. ASME, New York 1979, AMD Vol. 34, 19- 35 (1979; Zbl 0423.76076) and Proc. 3rd int. Conf. Finite elements in flow problems, Banff/Alberta 1980, Vol. II, 283-292 (1980; Zbl 0446.76077)] has allowed to substantially improve the Galerkin approximations of some engineering problems like thin structures, incompressible media, fluid flows etc., where spurious oscillations, locking and other undesirable features appeared.
By noting that the direct application of such a method to axisymmetric shell problems cannot overcome the dependence on the shell thickness, the authors analyze in this paper a simpler scale model equation, i.e., a singular diffusion problem given by \(\sigma^ 2u-\epsilon^ 2\Delta u=f.\) The direct applications of standard Galerkin method and Galerkin/least-squares method do not overcome the spurious oscillations which appear when the ratio \(\epsilon^ 3/\sigma^ 2\) becomes too small. To cure this shortcoming, the authors add to the Galerkin method a least-squares form of the gradient of the Euler-Lagrange equation; in this way, they obtain stability in the \(H^ 1\) seminorm instead of \(L_ 2\)-stability in previous works. This new method is analyzed in detail for the one-dimensional model and then generalized to the multi-dimensional equation. Finally, numerical experiments confirm the good stability and accuracy of this method.
Reviewer: M.Bernadou

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin methods for advection dominated flows, () · Zbl 0449.76077
[2] Hughes, T.J.R.; Brooks, A., A multidimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[3] Hughes, T.J.R.; Brooks, A.N., A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline upwind procedure, (), 46-65
[4] Johnson, C.; Nävert, U., An analysis of some finite element methods for advection diffusion problems, (), 99-116
[5] Johnson, C., Finite element methods for convection-diffusion problems, (), 311-323
[6] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problem, Comput. methods appl. mech. engrg., 45, 285-312, (1984) · Zbl 0526.76087
[7] Nävert, U., A finite element method for convection-diffusion problems, ()
[8] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[9] Johnson, C., Streamline diffusion methods for problems in fluid mechanics, (), 251-261
[10] Johnson, C.; Saranen, J., Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. comp., 47, 1-18, (1986) · Zbl 0609.76020
[11] Hughes, T.J.R.; Mallet, M., A new finite element method for computational fluid dynamics: III. the generalized streamline operator for multidimensional advection-diffusion systems, Comput. methods appl. mech. engrg., 58, 305-328, (1986) · Zbl 0622.76075
[12] Hughes, T.J.R.; Franca, L.P.; Mallet, M., A new finite element method for computational fluid dynamics: I. symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. methods appl. mech. engrg., 54, 223-234, (1986) · Zbl 0572.76068
[13] Dutra do Carmo, E.G., New finite element methods for convection-diffusive problems, () · Zbl 1296.74110
[14] Dutra do Carmo, E.G.; Galeão, A.C., A consistent formulation of the finite element to solve convective-diffuse transport problems, Rev. bras. ciênc. mec., 4, 309-340, (1986)
[15] E.G. Dutra do Carmo and A.C. Galeão, Feedback Petrov-Galerkin methods for convection dominated problems, Comput. Methods Appl. Mech. Engrg., submitted. · Zbl 0753.76093
[16] Galeão, A.C.; Dutra do Carmo, E.G., A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems, Comput. methods appl. mech. engrg., 68, 83-95, (1988) · Zbl 0626.76091
[17] Hughes, T.J.R.; Mallet, M., A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. methods appl. mech. engrg., 58, 329-336, (1986) · Zbl 0587.76120
[18] Hughes, T.J.R.; Mallet, M.; Mizukami, A., A new finite element method for computational fluid dynamics: II. beyond SUPG, Comput. methods appl. mech. engrg., 54, 341-355, (1986) · Zbl 0622.76074
[19] F. Chalot, L.P. Franca, I. Harari, T.J.R. Hughes, F. Shakib, M. Mallet, J. Periaux and B. Stoufflet, Calculation of two-dimensional Euler flows with a new Petrov-Galerkin finite element method, in: A. Dervieux and B. Van Leer, eds., Notes on Numerical Fluid Mechanics (Vieweg, Braunschweig, to appear).
[20] Franca, L.P.; Harari, I.; Hughes, T.J.R.; Mallet, M.; Shakib, F.; Spelce, T.E.; Chalot, F.; Tezduyar, T.E., A Petrov-Galerkin finite element method for the compressible Euler and Navier-Stokes equations, (), 19-43
[21] Hughes, T.J.R.; Franca, L.P.; Harari, I.; Mallet, M.; Shakib, F.; Spelce, T.E., Finite element method for high-speed flows: consistent calculation of boundary flux, ()
[22] Hughes, T.J.R.; Mallet, M.; Franca, L.P., Entropy-stable finite element methods for compressible fluids: application to high Mach number flows with schocks, (), 761-773
[23] Hughes, T.J.R.; Mallet, M.; Franca, L.P., New finite element methods for the compressible Euler and Navier-Stokes equations, (), 339-360 · Zbl 0678.76069
[24] Mallet, M., A finite element method for computational fluid dynamics, ()
[25] Hughes, T.J.R.; Franca, L.P.; Mallet, M., A new finite element method for computational fluid dynamics: VI. convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems, Comput. methods appl. mech. engrg., 63, 97-112, (1987) · Zbl 0635.76066
[26] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[27] L.P. Franca, New mixed finite element methods, Ph.D. Thesis, Applied Mechanics Division, Stanford University, CA 94305, U.S.A. · Zbl 0651.65078
[28] Franca, L.P.; Hughes, T.J.R., Two classes of mixed finite element methods, Comput. methods appl. mech. engrg., 69, 89-129, (1988) · Zbl 0651.65078
[29] Franca, L.P.; Hughes, T.J.R.; Loula, A.F.D.; Miranda, I., A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element method, Numer. math., 53, 123-141, (1988) · Zbl 0656.73036
[30] Loula, A.F.D.; Franca, L.P.; Hughes, T.J.R.; Miranda, I., Stability, convergence and accuracy of a new finite element method for the circular arch problem, Comput. methods appl. mech. engrg., 63, 281-303, (1987) · Zbl 0607.73077
[31] Loula, A.F.D.; Hughes, T.J.R.; Franca, L.P.; Miranda, I., Mixed Petrov-Galerkin method for the Timoshenko beam, Comput. methods appl. mech. engrg., 63, 133-154, (1987) · Zbl 0607.73076
[32] Franca, L.P.; Loula, A.F.D., A new mixed finite element method for the Timoshenko beam problem, () · Zbl 0737.76044
[33] Hughes, T.J.R.; Franca, L.P., A mixed finite element formulation for Reissner-Mindlin plate theory: uniform convergence of all higher-order spaces, Comput. methods appl. mech. engrg., 67, 223-240, (1988) · Zbl 0611.73077
[34] A.F.D. Loula, I. Miranda, T.J.R. Hughes amd L.P. Franca, A successful mixed formulation for axisymmetric shell analysis employing discontinuous stress fields of the same order as the displacement field, in: Proc. Fourth Brazilian Symposium on Piping and Pressure Vessels 2 (Salvador, ABCM, Brazil) 581-599.
[35] Loula, A.F.D.; Miranda, I.; Hughes, T.J.R.; Franca, L.P.; Loula, A.F.D.; Miranda, I.; Hughes, T.J.R.; Franca, L.P., On mixed finite element methods for axisymmetric shell analysis, (), Comput. methods appl. mech. engrg., 72, 201-231, (1989) · Zbl 0691.73030
[36] Franca, L.P.; Hughes, T.J.R.; Loula, A.F.D.; Miranda, I., A new family of stable elements for the Stokes problem based on a mixed Galerkin/least-squares finite element formulation, (), 1067-1074
[37] Hughes, T.J.R.; Franca, L.P., A new finite element formulation for computational fluid dynamics: VII. the Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. methods appl. mech. engrg., 65, 85-96, (1987) · Zbl 0635.76067
[38] Franca, L.P.; Franca, L.P., Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, (), Comput. methods appl. mech. engrg., (1989), to appear · Zbl 0686.65019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.