Analysis of resonances in the spin-orbit problem in celestial mechanics. I: The synchronous resonance. (English) Zbl 0699.70014

Summary: We study the stability of spin-orbit resonances in celestial mechanics, namely the exact commensurabilities between the periods of rotation and revolution of satellites or planets. We introduce a mathematical model describing an approximation of the physical situation and we select a set of satellites for which such simplified model provides a good approximation. Applying the Kolmogorov-Arnold-Moser theory we are able to construct invariant surfaces trapping the synchronous resonance from above and below. The existence of such surfaces, established for the natural values of the physical and orbital parameters, allows to prove the stability of the 1:1 resonance. Furthermore we try to construct KAM tori with frequencies as close as possible to one so to trap the synchronous resonance in a finer region.


70F15 Celestial mechanics
70K20 Stability for nonlinear problems in mechanics
70M20 Orbital mechanics
70-08 Computational methods for problems pertaining to mechanics of particles and systems
Full Text: DOI


[1] V. I. Arnold,Proof of a theorem by A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surveys18, 9 (1963). · Zbl 0129.16606
[2] D. Braess and E. Zehnder,On the numerical treatment of a small divisor problem. Numer. Math.39, 269 (1982). · Zbl 0497.65047
[3] A. Cayley,Tables of the developments of functions in the theory of elliptic motion. Mem. Roy. Astron. Soc.29, 191 (1859).
[4] A. Celletti,Analysis of Resonances in the Spin-Orbit Problem in Celestial Mechanics. Ph.D. Thesis, ETH-Zürich (1989). · Zbl 0699.70014
[5] A. Celletti,Analysis of resonances in the spin-orbit problem in Celestial Mechanics: Higher order resonances and some numerical experiments (Part II). To appear in ZAMP. · Zbl 0711.70016
[6] A. Celletti and L. Chierchia,Rigorous estimates for a computer-assisted KAM theory. J. Math. Phys.28, 2078 (1987). · Zbl 0651.58011
[7] A. Celletti and L. Chierchia,Construction of analytic KAM surfaces and effective stability bounds. Commun. Math. Phys.118, 119 (1988). · Zbl 0657.58032
[8] A. Celletti and L. Chierchia,A computer-assisted approach to small-divisors problems arising in Hamiltonian mechanics. Proc. conf. on Computer aided proofs in analysis, Cincinnati (Ohio), March 1989. · Zbl 0820.70004
[9] A. Celletti and A. Giorgilli,On the numerical optimization of KAM estimates by classical perturbation theory. J. Appl. Math. and Phys. (ZAMP)39, 743 (1988). · Zbl 0665.70020
[10] G. Colombo and I. I. Shapiro,The rotation of the planet Mercury. Astrophys. J.145, 296 (1966).
[11] J. M. A. Danby,Fundamentals of Celestial Mechanics. Macmillan, New York 1962.
[12] R. De La Llave and D. Rana,Proof of accurate bounds in small denominator problems. Preprint (1986).
[13] J. Denzler,Mather sets for plane Hamiltonian systems. J. of Applied Math. and Phys. (ZAMP)38, 791 (1987). · Zbl 0641.70014
[14] J.-P. Eckmann and P. Wittwer,Computer methods and Borel summability applied to Feigenbaum’s equation. Springer Lect. Notes in Phys.227, Berlin 1985. · Zbl 0598.58040
[15] H. Eliasson,Absolutely convergent series expansions for quasiperiodic motions. Preprint, Univ. of Stockholm (1987).
[16] D. F. Escande and F. Doveil,Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems. J. Stat. Phys.26, 257 (1981).
[17] G. Gallavotti,The Elements of Mechanics. Springer-Verlag, New York 1983. · Zbl 0512.70001
[18] G. Gallavotti,Perturbation theory for classical Hamiltonian systems. InScaling and Self-Similarity in Physics (Ed. J. Fröhlich), Birkhäuser, Boston 1984.
[19] G. Gallavotti,Quasi-integrable mechanical systems. InCritical Phenomena, Random Systems, Gauge Theories (Eds. K. Osterwalder and R. Stora), Les HouchesXLIII, 539 (1986). · Zbl 0662.70022
[20] P. Goldreich and S. Peale,Spin-orbit coupling in the solar system. Astron. J.71, 425 (1966).
[21] P. Goldreich and S. Peale,The dynamics of planetary rotations. Ann. Rev. Astron. Astroph.6, 287 (1970).
[22] P. Goldreich and S. Soter,Q in the solar system. Icarus5, 375 (1966).
[23] J. M. Greene,A method for determining a stochastic transition. J. of Math. Phys.20, 1183 (1979).
[24] O. Hald,On a Newton-Moser type method. Numer. Math.23, 411 (1975). · Zbl 0309.65020
[25] G. H. Hardy and E. M. Wright,The Theory of Numbers, Oxford 1979. · Zbl 0423.10001
[26] M. Herman,Sur les courbes invariantes pour les difféomorphismes de l’anneau. Astérisque2, 144 (1986).
[27] M. Herman,Recent results and some open questions on Sigel’s linearization theorems of germs of complex analytic diffemorphisms of C n near a fixed point. Preprint (1987).
[28] A. N. Kolmogorov,On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian. Dokl. Akad. Nauk. SSR98, 469 (1954). · Zbl 0056.31502
[29] O. E. Lanford III,Computer assisted proofs in analysis. Physics A124, 465 (1984). · Zbl 0599.58036
[30] G. J. F. MacDonald,Tidal friction. Rev. Geophys.2, 467 (1964).
[31] R. S. MacKay,A renormalization approach to invariant circles in area-preserving maps. Physica7D, 283 (1983). · Zbl 1194.37068
[32] R. S. MacKay,Transition to chaos for area-preserving maps. Lect. Notes in Phys.247, 390 Springer, Berlin 1985.
[33] J. Mather,Nonexistence of invariant circles. Erg. Theory and Dynam. Syst.4, 301 (1984). · Zbl 0557.58019
[34] J. Moser,On invariant curves of area-preserving mappings of an annulus. Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II1, 1 (1962). · Zbl 0107.29301
[35] J. Moser,A rapidly convergent iteration method and non-linear partial differential equations. Ann. Scuola Norm. Sup. Pisa20, 265 (1966). · Zbl 0174.47801
[36] J. Moser,Minimal solutions of variational problems on a torus. Ann. Inst. Henri Poincaré3, 229 (1986). · Zbl 0609.49029
[37] J. Moser,Recent developments in the theory of Hamiltonian systems, SIAM Rev.28, 459 (1986). · Zbl 0606.58022
[38] J. Moser,Minimal foliations on a torus, Four lectures at C.I.M.E.; Conf. on ?Topics in Calculus of Variations? (1987).
[39] J. Moser,Ausgewählte Kapitel der Variationsrechnung. Lect. held at the ETH in the summer semester 1988.
[40] J. A. Murdock,Some mathematical aspects of spin-orbit resonance I. Celestial Mech.18, 237 (1978). · Zbl 0402.70007
[41] J. A. Murdock,Some mathematical aspects of spin-orbit resonance II. Celestial Mech.24, 83 (1981). · Zbl 0482.70007
[42] D. P. Parent,Exercises in Number Theory. Springer-Verlag, Berlin 1984. · Zbl 0536.10001
[43] S. J. Peale,Rotation histories of the natural satellites. InPlanetary Satellites (Ed. J. A. Burns), Univ. of Arizona Press 1977.
[44] I. C. Percival,Chaotic boundary of a Hamiltonian map. Physica6D, 67 (1982).
[45] D. Rana,Proof of accurate upper and lower bounds to stability domains in small denominator problems. Ph.D. thesis, Princeton 1987.
[46] D. Salamon and E. Zehnder,KAM theory in configuration space. Comment. Math. Helvetici64, 84 (1989). · Zbl 0682.58014
[47] J. Wisdom,Chaotic dynamics in the solar system, Urey lecture (1986).
[48] J. Wisdom,Chaotic behaviour in the solar system. Proc. R. Soc. Lond.A413, 109 (1987).
[49] J. Wisdom and S. J. Peale,The chaotic rotation of Hyperion. Icarus58, 137 (1984).
[50] (no author listed)Vax architecture handbook. Digital Equipment Corporation (1981).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.