×

zbMATH — the first resource for mathematics

The interaction of waves with arrays of vertical circular cylinders. (English) Zbl 0699.76021
Summary: The scattering of water waves by an array of N bottom-mounted vertical circular cylinders is solved exactly (under the assumption of linear water wave theory) using the method proposed by B. H. Spring and P. L. Monkmeyer [Proc. 14th Int. Conf. Coastal Eng., Chap. 107, 1828-1845 (1974)]. A major simplification to this theory has been found which makes the evaluation of quantities such as the forces on the cylinders much simpler. New formulae are given for the first and mean second-order forces together with one for the free-surface elevation in the vicinity of a particular cylinder. Comparisons are made between the exact results shown here and those generated using the approximate method of P. McIver and D. V. Evans [Appl. Ocean. Res. 6, 101-107 (1984)]. The behaviour of the forces on the bodies in the long-wave limit is also examined for the special case of two cylinders with equal radii.

MSC:
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kim, J. Fluid Mech. 200 pp 235– (1989)
[2] DOI: 10.1017/S0022112086000101 · Zbl 0593.76030 · doi:10.1017/S0022112086000101
[3] DOI: 10.1016/0141-1187(85)90003-3 · doi:10.1016/0141-1187(85)90003-3
[4] Záviška, Annln. Phys. 40 pp 1023– (1913)
[5] DOI: 10.1121/1.1906845 · doi:10.1121/1.1906845
[6] DOI: 10.1017/S002211208200264X · doi:10.1017/S002211208200264X
[7] DOI: 10.1016/0141-1187(87)90029-0 · doi:10.1016/0141-1187(87)90029-0
[8] DOI: 10.1016/0141-1187(84)90047-6 · doi:10.1016/0141-1187(84)90047-6
[9] DOI: 10.1016/0141-1187(79)90027-0 · doi:10.1016/0141-1187(79)90027-0
[10] DOI: 10.1017/S0022112087003264 · Zbl 0634.76018 · doi:10.1017/S0022112087003264
[11] Martin, Q. J. Mech. Appl. Maths 38 pp 105– (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.