×

Characterization of simple symplectic groups of degree 4 over locally finite fields in the class of periodic groups. (English. Russian original) Zbl 1483.20085

Algebra Logic 57, No. 3, 201-210 (2018); translation from Algebra Logika 57, No. 3, 306-320 (2018).
Summary: Let \(G\) be a periodic group containing an element of order 2 such that each of its finite subgroups of even order lies in a finite subgroup isomorphic to a simple symplectic group of degree 4. It is shown that \(G\) is isomorphic to a simple symplectic group \(S_4(Q)\) of degree 4 over some locally finite field \(Q\).

MSC:

20G40 Linear algebraic groups over finite fields
20E32 Simple groups
20F50 Periodic groups; locally finite groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. V. Lytkina and V. D. Mazurov, “Characterization of simple symplectic groups of degree 4 over locally finite fields of characteristic 2 in the class of periodic groups,” Sib. Math. J., 58, No. 5, 850-858 (2017). · Zbl 1400.20049
[2] M. Suzuki, Group Theory II, Springer, Berlin (1986).
[3] J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Lond. Math. Soc. Lect. Note Ser., 407, Cambridge University Press (2013). · Zbl 1303.20053
[4] M. Aschbacher, “On the maximal subgroups of the finite classical groups,” Inv. Math., 76, No. 3, 469-514 (1984). · Zbl 0537.20023
[5] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lect. Note Ser., 129, Cambridge Univ., Cambridge (1990). · Zbl 0697.20004
[6] A. G. Rubashkin and K. A. Filippov, “Periodic groups saturated with the groups <Emphasis Type=”Italic“>L2(<Emphasis Type=”Italic“>p <Emphasis Type=”Italic“>n),” Sib. Math. J., 46, No. 6, 1119-1122 (2005).
[7] B. Huppert, Endliche Gruppen, Vol. 1, Grundlehren Math. Wiss., 134, Springer, Berlin (1979).
[8] B. Hartley and G. Shute, “Monomorphisms and direct limits of finite groups of Lie type,” Q. J. Math., Oxford II. Ser., 35, 49-71 (1984). · Zbl 0547.20024
[9] B. D. Li and D. V. Lytkina, “On Sylow 2-subgroups of periodic groups saturated with finite simple groups,” Sib. Math. J., 57, No. 6, 1029-1033 (2016). · Zbl 1364.20022
[10] S. N. Černikov, “On the theory of infinite special groups,” Mat. Sb., 7(49), No. 3, 539-548 (1940).
[11] D. V. Lytkina, L. R. Tukhvatulllina, and K. A. Filippov, “The periodic groups saturated by finitely many finite simple groups,” Sib. Math. J., 49, No. 2, 317-321 (2008).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.