×

zbMATH — the first resource for mathematics

A meshless Reissner plate bending procedure using local radial point interpolation with an efficient integration scheme. (English) Zbl 07006017
Summary: This paper presents a numerical analysis of bending plates considering Reissner’s hypothesis. A truly meshless method designated Meshless Local Petrov-Galerkin (MLPG) method is used to obtain a linear system of equation. A simplified Radial Point Interpolation Method (RPIM) approximation scheme, by centering both quadrature and local interpolation subdomains in the same field point, is proposed to increase the computational efficiency of the MLPG. Moreover, the shear locking effect is also analyzed. Results obtained by the application of the presented formulation are discussed in this work, considering plates with different geometries and boundary conditions, and compared, in terms of precision and efficiency, with solutions obtained via Finite Element Method.

MSC:
74 Mechanics of deformable solids
65 Numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kirchoff, G., Uber das gleichgewicht und die bewegung einer elastischen scheibe, J Fur Die Reine Und Angewandte Math (Crelle’s J), 40, 51-88, (1850)
[2] Krysl, P.; Belytschko, T., Analysis of thin plates by the element-free Galerkin method, Comput Mech, 17, 1-2, 26-35, (1995) · Zbl 0841.73064
[3] Leitão, V., A meshless method for Kirchhoff plate bending problems, Int J Numer Methods Eng, 52, 10, 1107-1130, (2001) · Zbl 0991.74081
[4] Zhu, T.; Zhang, J.-D.; Atluri, S., A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, Comput Mech, 21, 3, 223-235, (1998) · Zbl 0920.76054
[5] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 2, 117-127, (1998) · Zbl 0932.76067
[6] Shen, S. N.A. S., The meshless local Petrov-Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods, Comput Model Eng Sci, 3, 11-51, (2002) · Zbl 0996.65116
[7] Long, S.; Zhang, Q., Analysis of thin plates by the local boundary integral equation (LBIE) method, Eng Anal Bound Elem, 26, 8, 707-718, (2002) · Zbl 1083.74601
[8] Soric, J.; Li, Q.; Jarak, T.; Atluri, S., Meshless local Petrov-Galerkin (MLPG) formulation for analysis of thick plates, Comput Model Eng Sci, 6, 349-358, (2004) · Zbl 1075.74083
[9] Sladek, J.; Sladek, V.; Zhang, C.; Krivacek, J.; Wen, P., Analysis of orthotropic thick plates by meshless local Petrov-Galerkin (MLPG) method, Int J Numer Methods Eng, 67, 13, 1830-1850, (2006) · Zbl 1127.74051
[10] Sladek, J.; Sladek, V.; Zhang, C., Local integral equation method for viscoelastic Reissner-Mindlin plates, Comput Mech, 41, 6, 759-768, (2008) · Zbl 1143.74053
[11] Xia, P.; Long, S.; Wei, K., An analysis for the elasto-plastic problem of the moderately thick plate using the meshless local Petrov-Galerkin method, Eng Anal Bound Elem, 35, 7, 908-914, (2011) · Zbl 1259.74097
[12] Xia, P.; Wei, K. X., Application of the meshless local Petrov-Galerkin method in the elasto-plastic fracture problem of moderately thick plate, Appl Mech Mater, 155, 485-490, (2012)
[13] Vaghefi, R.; Hematiyan, M.; Nayebi, A., Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov-Galerkin method, Eng Anal Bound Elem, 71, 34-49, (2016) · Zbl 1403.74127
[14] Sladek, V.; Sladek, J.; Sator, L., Physical decomposition of thin plate bending problems and their solution by mesh-free methods, Eng Anal Bound Elem, 37, 2, 348-365, (2013) · Zbl 1351.74058
[15] Fontes Jr, E.; Santiago, J.; Telles, J., An iterative coupling between meshless methods to solve embedded crack problems, Eng Anal Bound Elem, 55, 52-57, (2015) · Zbl 1403.74103
[16] Cai, Y.; Han, L.; Tian, L.; Zhang, L., Meshless method based on Shepard function and partition of unity for two-dimensional crack problems, Eng Anal Bound Elem, 65, 126-135, (2016) · Zbl 1403.74082
[17] Vu, T.-V.; Nguyen, N.-H.; Khosravifard, A.; Hematiyan, M.; Tanaka, S.; Bui, T. Q., A simple FSDT-based meshfree method for analysis of functionally graded plates, Eng Anal Bound Elem, 79, 1-12, (2017) · Zbl 1403.74128
[18] Farahani, B. V.; Berardo, J.; Belinha, J.; Ferreira, A.; Tavares, P. J.; Moreira, P., On the optimal shape parameters of distinct versions of RBF meshless methods for the bending analysis of plates, Eng Anal Bound Elem, 84, 77-86, (2017) · Zbl 1403.65154
[19] Mindlin, R. D., Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J Appl Mech, 18, 31, (1951) · Zbl 0044.40101
[20] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, J Appl Mech, A69-A77, (1945) · Zbl 0063.06470
[21] Reissner, E., On bending of elastic plates, Q Appl Math, 5, 1, 55-68, (1947) · Zbl 0030.04302
[22] Wang, C. M.; Lim, G.; Reddy, J.; Lee, K., Relationships between bending solutions of Reissner and Mindlin plate theories, Eng Struct, 23, 7, 838-849, (2001)
[23] Konda DH. Análise de pavimentos de edifícios através de uma formulação do método dos elementos de contorno baseada nas hipóteses de Reissner [dissertation]. Ilha Solteira (SP): Universidade Estadual Paulista; 2008.
[24] Liu, G.; Gu, Y., A local radial point interpolation method (LRPIM) for free vibration analyses of 2-d solids, J Sound Vib, 246, 1, 29-46, (2001)
[25] Wang, J.; Liu, G., A point interpolation meshless method based on radial basis functions, Int J Numer Methods Eng, 54, 11, 1623-1648, (2002) · Zbl 1098.74741
[26] Powell, M. J.D., The theory of radial basis function approximation in 1990, Adv. Numer. Anal., 105-210, (1992) · Zbl 0787.65005
[27] Liu, G.-R.; Zhang, G.; Gu, Y.; Wang, Y., A meshfree radial point interpolation method (RPIM) for three-dimensional solids, Comput Mech, 36, 6, 421-430, (2005) · Zbl 1138.74420
[28] Golberg, M.; Chen, C.; Bowman, H., Some recent results and proposals for the use of radial basis functions in the BEM, Eng Anal Bound Elem, 23, 4, 285-296, (1999) · Zbl 0948.65132
[29] Liu, G.-R., Meshfree methods: moving beyond the finite element method, (2009), Taylor & Francis
[30] Liu, G.-R.; Gu, Y.-T., An introduction to meshfree methods and their programming, (2005), Springer Science & Business Media
[31] Wang, J.; Liu, G., On the optimal shape parameters of radial basis functions used for 2-d meshless methods, Comput Methods Appl Mech Eng, 191, 23-24, 2611-2630, (2002) · Zbl 1065.74074
[32] Xia, P.; Wei, K. X., Shear locking analysis of plate bending by using meshless local radial point interpolation method, Appl Mech Mater, 166, 2867-2870, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.