×

Spectral stability under tunneling. (English) Zbl 0702.35189

From the author’s abstract: “We study the spectral properties of multiple well Schrödinger operators on \({\mathbb{R}}^ n\). We give in particular upper bounds on energy shifts due to tunnel effect and localization properties of wave packets.”
Reviewer: D.Robert

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
81Q15 Perturbation theories for operators and differential equations in quantum theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] [Ad] Adams, R.A.: Sobolev spaces. New York: Academic Press 1975 · Zbl 0314.46030
[2] [Ag] Agmon, S.: Lectures on exponential decay of solutions of second order elliptic operators. Princeton, NJ: Princeton University Press 1982 · Zbl 0503.35001
[3] [AsHa] Asbaugh, M., Harrell, E.: Perturbation theory for shape resonances and large barrier potentials. Commun. Math. Phys.83, 151 (1982) · Zbl 0494.34044
[4] [BCD1] Briet, Ph., Combes, J.M., Duclos, P.: Spectral properties of Schrödinger operators in the semi-classical limit. Proc. Int. Conf. on Diff. Eqn. Math. Phys., Knowles, I., Saito, Y. (eds.). Lecture Notes in Math. Berlin, Heidelberg, New York: Springer 1987 · Zbl 0654.47032
[5] [BCD2] Briet, Ph., Combes, J.M., Duclos, P.: On the location of resonances in the semi-classical limit III: Shape resonances (to appear) · Zbl 0629.47043
[6] [BCD3] Briet, Ph., Combes, J.M., Duclos, P.: Spectral stability under tunneling for Schrödinger operators, to appear in the Proc. of the Conf. on Partial Differential Equations, Holzhau (DDR) April 1988. Teubner-Text zur Mathematik · Zbl 0686.35086
[7] [CDS1] Combes, J.M., Duclos, P., Seiler, R.: Convergent expansions for tunneling. Commun. Math. Phys.92, 229 (1983) · Zbl 0579.47050
[8] [CDS2] Combes, J.M., Duclos, P., Seiler, R.: On the shape resonances. Lecture Notes in Physics, vol. 211, p. 64. Berlin, Heidelberg, New York: Springer 1984
[9] [CDKS] Combes, J.M., Duclos, P., Klein, M., Seiler, R.: The shape resonance. Commun. Math. Phys.110, 215 (1987) · Zbl 0629.47044
[10] [GGJ] Graffi, S., Grecchi, V., Jona-Lasinio, G.: Tunneling instability via perturbation theory. J. Phys. A17, 2935 (1984) · Zbl 0559.35078
[11] [Ha1] Harrell, E.: Double Wells. Commun. Math. Phys.119, 351 (1979)
[12] [Ha2] Harrell, E.: The band structure of a one-dimensional periodic system in a scaling limit. Ann. Phys.75, 239 (1980)
[13] [HSj1] Helffer, B., Sjöstrand, J.: Multiple Wells in the semi-classical limit. Commun. Part. Diff. Eq.9, 337 (1984) · Zbl 0546.35053
[14] [HSj2] Helffer, B., Sjöstrand, J.: Puits multiples. II. interaction moléculaire, symetries, perturbation. Ann. Inst. H. Poincaré2, 127 (1985)
[15] [HSj3] Helffer, B., Sjöstrand, J.: Interaction through non-resonant Wells. Mathematishe Nachriten (1985) · Zbl 0597.35023
[16] [HSj4] Helffer, B., Sjöstrand, J.: Resonances en limite semi-classique, [Suppl.] Bulletin S.M.F.114 (1986) · Zbl 0631.35075
[17] [HiSig] Hislop, P., Sigal, I.M.: Semi-classical theory of shape resonances in quantum mechanics. Mem. Am. Math. Soc.78 (399), (1989) · Zbl 0704.35115
[18] [JMSc1] Jona-Lasinio, G., Martinelli, F., Scoppola, E.: New approach in the semi-classical limit of quantum mechanics. I. Multiple tunnelings in one dimension. Commun. Math. Phys.80, 223 (1981) · Zbl 0483.60094
[19] [JMSc2] Jona-Lasinio, G., Martinelli, F., Scoppola, E.: Multiple tunneling ind-dimensions: a quantum particle in a hierarchical potential. Ann. Inst. H. Poincaré43, 2 (1985) · Zbl 0586.35030
[20] [JMSc3] Jona-Lasinio, G., Martinelli, F., Scoppola, E.: A quantum particle in a hierarchical potential with tunneling over arbitrary large scales. J. Phys. A17 (1984) · Zbl 1188.81106
[21] [JMSc4] Jona-Lasinio, G., Martinelli, F., Scoppola, E.: Tunneling in one dimension: general theory, instabilities, rules of calculation, applications. Mathematics and physics, lecture on recent results, Vol. 11, Streit, L. (ed.). World Scientific: Singapore 1986 · Zbl 0672.60103
[22] [K] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0148.12601
[23] [MaR] Martinez, A., Rouleux, M.: Effet tunnel entre puits dégénérés. Comm. P.D.E. (1988)13, 1157 · Zbl 0649.35073
[24] [O] Outassourt, A.: Analyse semi-classique pour l’opérateur de Schrödinger à Potentiel Périodique. J. Funct. Anal.72, 1 (1987) · Zbl 0662.35023
[25] [RS] Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York, San Francisco, London: Academic Press 1975 · Zbl 0308.47002
[26] [Sig1] Sigal, I.M.: Geometric Parametrices and the Many-Body Birman-Schwinger Principle. Duke Math. J.50, 517 (1983) · Zbl 0543.47044
[27] [Sig2] Sigal, I.M.: Sharp Expnential bounds on resonance states and width of resonances. Adv. Appl. Math.9, 127 (1988) · Zbl 0652.47008
[28] [Sim1] Simon, B.: Semi-classical analysis of low-lying eigenvalues. II. Tunneling. Ann. Math.120, 89 (1984) · Zbl 0626.35070
[29] [Sim2] Simon, B.: Semi-classical analysis of low-lying eigenvalues. III. Width of the ground-state band in strongly coupled solids. Ann. Phys.158, 415 (1984) · Zbl 0596.35028
[30] [Sim3] Simon, B.: Semi-classical analysis of low-lying eigenvalues. IV. The flea on the elephant. J. Funct. Anal.63, 123 (1985) · Zbl 0652.35090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.