×

zbMATH — the first resource for mathematics

Generalized inverted exponential distribution under hybrid censoring. (English) Zbl 07035569
Summary: The hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. Based on hybrid censored samples, we first derive the maximum likelihood estimators of the unknown parameters and the expected Fisher’s information matrix of the generalized inverted exponential distribution (GIED). Monte Carlo simulations are performed to study the performance of the maximum likelihood estimators. Next we consider Bayes estimation under the squared error loss function. These Bayes estimates are evaluated by applying Lindley’s approximation method, the importance sampling procedure and Metropolis-Hastings algorithm. The importance sampling technique is used to compute the highest posterior density credible intervals. Two data sets are analyzed for illustrative purposes. Finally, we discuss a method of obtaining the optimum hybrid censoring scheme.

MSC:
62-XX Statistics
Software:
WinBUGS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abouammoh, A. M.; Alshingiti, A. M., Reliability of generalized inverted exponential distribution, Journal of Statistical Computation and Simulation, 79, 1301-1315, (2009) · Zbl 1178.62109
[2] Balakrishnan, N.; Kundu, D., Hybrid censoring models, inferential results and applications, Computational Statistics and Data Analysis, 57, 166-209, (2013) · Zbl 1365.62364
[3] Banerjee, A.; Kundu, D., Inference based on type-II hybrid censored data from a Weibull distribution, IEEE Transactions on Reliability, 57, 369-378, (2008)
[4] Chen, S. M.; Bhattacharya, G. K., Exact confidence bounds for an exponential parameter hybrid censoring, Communications in Statistics—Theory and Methods, 17, 6, 1858-1870, (1988) · Zbl 0644.62101
[5] Childs, A.; Chandrasekhar, B.; Balakrishnan, N.; Kundu, D., Exact inference based on type-I and type-II hybrid censored samples from the exponential distribution, Annals of the Institute of Statistical Mathematics, 55, 319-330, (2003) · Zbl 1049.62021
[6] Dey, S., Inverted exponential distribution as a life distribution model from a Bayesian viewpoint, Data Science Journal, 6, 29, 107-113, (2007)
[7] Draper, N.; Guttman, T., Bayesian analysis of hybrid life-test with exponential failure times, Annals of the Institute of Statistical Mathematics. Series A, 39, 219-225, (1987) · Zbl 0612.62134
[8] Dube, S.; Pradhan, B.; Kundu, D., Parameter estimation of the hybrid censored log-normal distribution, Journal of Statistical Computation and Simulation, 81, 275-287, (2011) · Zbl 1221.62137
[9] Epstein, B., Truncated life-tests in the exponential case, Annals of Mathematical Statistics, 25, 555-564, (1954) · Zbl 0058.35104
[10] Epstein, B., Estimation from life-test data, Technometrics, 2, 447-454, (1960) · Zbl 0096.12004
[11] Fairbanks, K.; Madasan, R.; Dykstra, R., A confidence interval for an exponential parameter from hybrid life-test, Journal of the American Statistical Association, 77, 1, 137-140, (1982) · Zbl 0504.62087
[12] Gupta, R. D.; Kundu, D., Hybrid censoring schemes with exponential failure distribution, Communications in Statistics—Theory and Methods, 27, 12, 3065-3083, (1998) · Zbl 1008.62679
[13] Gupta, R. D.; Kundu, D., Generalized exponential distributions, Australian and New Zealand Journal of Statistics, 41, 173-188, (1999) · Zbl 1007.62503
[14] Jeong, H. S.; Park, J. I.; Yum, B. J., Development of \((r, T)\) hybrid sampling plans for exponential lifetime distributions, Journal of Applied Statistics, 23, 601-607, (1996)
[15] Krishna, H.; Kumar, K., Reliability estimation in generalized inverted exponential distribution with progressively type II censored sample, Journal of Statistical Computation and Simulation, 83, 6, 1007-1019, (2013) · Zbl 1431.62442
[16] Kundu, D., On hybrid censored Weibull distribution, Journal of Statistical Planning and Inference, 137, 2127-2142, (2007) · Zbl 1120.62081
[17] Kundu, D., Bayesian inference and life testing plan for Weibull distribution in presence of progressive censoring, Technometrics, 50, 144-154, (2008)
[18] Kundu, D.; Pradhan, B., Bayesian inference and life testing plans for generalized exponential distribution, Science in China Series A: Mathematics, 52, 6, 1373-1388, (2009), Special volume dedicated to Professor Z.D. Bai · Zbl 1176.62024
[19] Lam, Y., Bayesian variable sampling plans for the exponential distribution with type-I censoring, The Annals of Statistics, 22, 696-711, (1994) · Zbl 0805.62093
[20] Lawless, J. F., Statistical models and methods for lifetime data, (1982), Wiley New York · Zbl 0541.62081
[21] Lieblein, J.; Zelen, M., Statistical investigation of the fatigue life deep groove ball bearings, Journal of Research of the National Bureau of Standards, 57, 273-316, (1956)
[22] Lin, C. T.; Duran, B. S.; Lewis, T. O., Inverted gamma as a life distribution, Microelectronics and Reliability, 29, 619-626, (1989)
[23] Lin, Y. P.; Liang, T.; Huang, W. T., Bayesian sampling plans for exponential distribution based on type I censoring data, Annals of the Institute of Statistical Mathematics, 54, 100-113, (2002) · Zbl 0993.62099
[24] Lindley, D. V., Approximate Bayesian methods (with discussions), Trabajos de Estadistica, 31, 232-245, (1980)
[25] S. Nadarajah, S. Kotz, 2003. The exponentiated Frechet distribution, available at: Interstat. Statjournals. Net, 0312001.
[26] Ng, T.; Chan, C. S.; Balakrishnan, N., Optimal progressive censoring plans for the Weibull distribution, Technometrics, 46, 470-481, (2004)
[27] Natzoufras, I., Bayesian modeling using winbugs, (2009), Wiley New York
[28] Park, S.; Balakrishnan, N., On simple calculation of the Fisher information in hybrid censoring schemes, Statistics & Probability Letters, 79, 1311-1319, (2009) · Zbl 1162.62091
[29] Pradhan, B.; Kundu, D., On progressively censored generalized exponential distribution, TEST, 18, 479-515, (2009) · Zbl 1203.62019
[30] Zhang, Y.; Meeker, W. Q., Bayesian life test planning for the Weibull distribution with given shape parameter, Metrika, 61, 237-249, (2005) · Zbl 1079.62099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.