# zbMATH — the first resource for mathematics

Defect correction methods for convection dominated convection-diffusion problems. (English) Zbl 0705.65081
The authors consider the approximate solution of singularly perturbed convection diffusion equations. Any appropriate numerical method faces the problem of resolution of sharp boundary layers. For instance, standard finite element methods are not appropriate when the perturbation parameter $$\epsilon$$ is of smaller order than the mesh distance h.
The method studied herein, originally due to P. W. Hemker [Lect. Notes Math. 960, 485-501 (1982; Zbl 0505.65047)], is a combination of defect correction with an artificial viscosity approximation. It computes a sequence of finite element solutions, where for $$\epsilon \ll h$$ the first solution is only a first order accurate approximation. At each correction step the residual is computed and a correction to the current approximation is calculated using the first order viscosity approximation.
The authors give local and global error estimates and show how the convergence depends on solution regularity, types of layers present and the subdomains on which the error is measured.
Reviewer: E.Lanckau

##### MSC:
 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N15 Error bounds for boundary value problems involving PDEs 35J70 Degenerate elliptic equations
Full Text:
##### References:
 [1] O. AXELSSON, On the numencal solution of convection dominated, convection-diffusion problems, in : Math. Meth. Energy Res. (K. I. Gross, ed. ), SIAM,Philadelphia, 1984. Zbl0551.76077 MR790509 · Zbl 0551.76077 [2] O. AXELSSON, Stability and error estimates of Galerkin finite element approximations for convection-diffusion equations, I. M. A. J. Numer. Anal., 1 (1981), 329-345. Zbl0508.76069 MR641313 · Zbl 0508.76069 · doi:10.1093/imanum/1.3.329 [3] W. ECKHAUS, Boundary layers in linear elliptic singular perturbation problems, SIAM Review, 14 (1972), 225-270. Zbl0234.35009 MR600325 · Zbl 0234.35009 · doi:10.1137/1014030 [4] V. ERVIN and W. LAYTON, High resolution minimal storage algorithms for convection dommated, convection diffusion equations, pp 1173-1201 in Tiams : of the Fourth Arms Conf. on Appl. Math. and Comp., 1987. Zbl0625.76095 MR905115 · Zbl 0625.76095 [5] V. ERVIN and W. LAYTON, An analysis of a defect correction method for a model convection diffusion equations, SIAM J. N. A. 26 (1989) 169-179. Zbl0672.65063 MR977954 · Zbl 0672.65063 · doi:10.1137/0726010 [6] P. W. HEMKER, Mixed defect correction iteration for the accurate solution of the convection diffusion equation, pp 485-501 in : Multigrid Methods, L. N. M. vol. 960, (W. Hackbusch and U. Trottenberg, eds.) Springer Verlag, Berlin 1982. Zbl0505.65047 MR685785 · Zbl 0505.65047 [7] P. W. HEMKER, The use of defect correction for the solution of a singularly perturbed o.d.e., preprint. CWI, Amsterdam, 1983. Zbl0504.65050 · Zbl 0504.65050 [8] C. JOHNSON and U. NÄVERT, An analysis of some finite element methods for advection diffusion problems, in : Anal. and Numer. Approaches to Asym. Probs. in Analysis (O. Axelson, L. S. Frank and A. van der Sluis, eds.) North Holland, 1981, 99-116. Zbl0455.76081 MR605502 · Zbl 0455.76081 [9] C. JOHNSON and U. NÄVERT and J. PITKARANTA, Finite element methods for linear hyperbolic problems, Comp. Meth. Appl. Mech. Eng., 45 (1984), 285-312. Zbl0526.76087 MR759811 · Zbl 0526.76087 · doi:10.1016/0045-7825(84)90158-0 [10] C. JOHNSON and A. H. SCHATZ and L. B. WAHLBIN, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49 (1987), 25-38. Zbl0629.65111 MR890252 · Zbl 0629.65111 · doi:10.2307/2008248 [11] C. MIRANDA, Partial differential equations of elliptic type, Springer Verlag, Berlin, 1980. Zbl0198.14101 MR284700 · Zbl 0198.14101 [12] U. NÄVERT, A finite element method for convection diffusion problems, Ph. D. Thesis, Chalmers Inst. of Tech., 1982. [13] A. H. SCHATZ and L. WAHLBTN, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), pp 47-89. Zbl0518.65080 MR679434 · Zbl 0518.65080 · doi:10.2307/2007363
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.