×

Normal hyperbolicity of center manifolds and Saint-Venant’s principle. (English) Zbl 0706.73016

The theory of normal hyperbolicity of center manifolds is generalized to infinite dimensional differential equations for elliptic problems in cylindrical domains. It is shown that the theory of normal hyperbolicity and the theory of Saint-Venant’s principle in elastostatics are two different aspects of the same mathematical concept. A reformulation of nonlinear elliptic problems in cylindrical domains to a formal evolution, where the axial variable playing the role of time is given to use the theory of infinite-dimensional center manifolds.
It is proven that all solutions u(t) staying close to the center of manifold satisfy a Saint-Venant type estimation that is \(\| u(t)- \tilde u(t)\| \leq C\exp (-\alpha (\ell -| t|))\) for \(t\in (- \ell,\ell)\), where C and \(\alpha\) are independent of \(\ell\), and \(\tilde u\) is a solution on the center manifold. The end of the paper deals with the classical Saint-Venant principle for three dimensional long nonlinear elastic prismatic bodies in detailed form.
Reviewer: I.Ecsedi

MSC:

74G50 Saint-Venant’s principle
74B20 Nonlinear elasticity
34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Antman, S. S., & C. S. Kenney [1981]: Large buckled states of nonlinearly elastic rods under torson, thrust, and gravity. Arch. Rational Mech. Anal. 76, 289-338. · Zbl 0472.73036
[2] Bonic, R., & J. Frampton [1966]: Smooth functions on Banach manifolds, J. Math. Mech. 16, 877-898. · Zbl 0143.35202
[3] Breuer, S., & J. J. Roseman [1977]: On SV’s principle in 3-dimensional nonlinear elasticity, Arch. Rational Mech. Anal. 63, 187-241. · Zbl 0351.73060
[4] Chow, S.-N., & J. K. Hale [1982]: Methods of Bifurcation Theory, Berlin-Heidelberg-New York: Springer-Verlag. · Zbl 0487.47039
[5] Ericksen, J. L. [1983]: Problems for infinite elastic prisms?Saint Venant’s problem for elastic prisms, in ?Systems of Nonlinear Partial Differential Equations?, J. M. Ball ed., NATO ASI C 111, Boston: Reidel Publ. Comp.
[6] Fischer, G. [1984]: Zentrumsmannigfaltigkeiten bei elliptischen Differentialgleichungen, Math. Nachr. 115, 137-157. · Zbl 0565.35040
[7] Hale, J. K., & J. Scheurle [1985]: Smoothness of bounded solutions of nonlinear evolution equations, J. Diff. Equations 56, 142-163. · Zbl 0541.34020
[8] Hirsch, M. W., Pugh, C. C., & M. Shub [1977]: Invariant manifolds, Lecture Notes in Mathematics Vol. 583, Berlin-Heidelberg-New York: Springer-Verlag.
[9] Holmes, P. J., & A. Mielke [1988]: Spatially complex equilibria of buckled rods, Arch. Rational Mech. Anal. 101, 319-348. · Zbl 0655.73029
[10] Horgan, C. O., & J. K. Knowles [1983]: Recent developments concerning Saint-Venant’s principle, Advances in Applied Mechanics 23, 179-269. · Zbl 0569.73010
[11] Kirchgässner, K. [1982]: Wave solutions of reversible systems and applications, J. Diff. Equations 45, 113-127. · Zbl 0507.35033
[12] Kirchgässner, K., & J. Scheurle [1986]: Saint-Venant’s principle from the dynamical point of view, manuscript, Universität Stuttgart.
[13] Kirchhoff, G. [1859]: Über das Gleichgewicht und die Bewegungen eines unendlich dünnen Stabes, Journal für Mathematik (Crelle) 56, 285-313. · ERAM 056.1494cj
[14] Knops, R. J., & L. E. Payne [1983]: A Saint-Venant’s principle for nonlinear elasticity, Arch. Rational Mech. Anal. 81, 1-12. · Zbl 0519.73005
[15] Mielke, A. [1986]: A reduction principle for nonautonomous systems in infinite-dimensional spaces, J. Diff. Equations 65, 68-88. · Zbl 0601.35018
[16] Mielke, A. [1988a]: Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Meth. Appl. Sciences 10, 51-66. · Zbl 0647.35034
[17] Mielke, A. [1988b]: Saint-Venant’s problem and semi-inverse solutions in nonlinear elasticity. Arch, Rational Mech. Anal. 102, 205-229. · Zbl 0651.73006
[18] Mielke, A. [1989]: On nonlinear problems of mixed type: a qualitative theory using infinite-dimensional center manifolds, Dynamics, Diff. Eqns., submitted.
[19] Oleinik, O.A., & G. A. Yosifian [1982]: On the asymptotic behaviour at infinity of solutions in linear elasticity, Arch. Rational Mech. Anal. 78, 29-53. · Zbl 0491.73008
[20] Orazov, B. B. [1989]: On the asymptotic behaviour at infinity of solutions of the traction boundary value problem, Proc. Royal Soc. Edinburgh 111 A, 33-52. · Zbl 0675.73012
[21] Palmer, K. J. [1975]: Linearization near integral manifolds, J. Math. Anal. Appl. 51, 243-255. · Zbl 0311.34056
[22] Roseman, J. J. [1967]: The principle of Saint-Venant in linear and nonlinear plane elasticity, Arch. Rational Mech. Anal. 25, 142-162. · Zbl 0153.27501
[23] Stein, E. M. [1970]: Singular integrals and differentiability properties of functions Princeton Univ. Press. · Zbl 0207.13501
[24] De Saint-Venant, B. [1856]: Mémoire sur la torsion des prismes, Mémoires présentés pars divers savants à l’académie de sciences de l’institut impérial de France, 2. Ser. 14, 233-560.
[25] Toupin, R. A. [1965]: Saint-Venant’s principle, Arch. Rational Mech. Anal. 18, 83-96. · Zbl 0203.26803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.