×

zbMATH — the first resource for mathematics

Least-squares finite elements for the Stokes problem. (English) Zbl 0706.76033
Summary: A least-squares method based on the first-order velocity-pressure- vorticity formulation for the Stokes problem is proposed. This method leads to a minimization problem rather than to a saddle-point problem. The choice of the combinations of elements is thus not subject to the Ladyzhenskaya-Babuška-Brezzi condition. Numerical results showing the optimal rate of convergence for equal-order interpolations are given.

MSC:
76D07 Stokes and related (Oseen, etc.) flows
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Babuška, I., Error bounds for finite element method, Numer. math., 16, 322-333, (1971) · Zbl 0214.42001
[2] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, Rev. francaise d’automatique inform. rech. opér., ser. rouge anal. numér. 8, R-2, 129-151, (1974) · Zbl 0338.90047
[3] Oden, J.T.; Carey, G.F., ()
[4] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[5] Hughes, T.J.R.; Franca, L.P., A new finite element formulation for computational fluid dynamics: VII. the Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. methods appl. mech. engrg., 65, 85-96, (1987) · Zbl 0635.76067
[6] Chang, C.L., A mixed finite element method for Stokes problem: acceleration-pressure formation, ()
[7] Wendland, W.L., Elliptic systems in the plane, (1979), Pitman London · Zbl 0396.35001
[8] Carey, G.F.; Oden, J.T., ()
[9] Chang, C.L.; Jiang, B.N., An error analysis of least-squares finite element method of velocity-pressure vorticity formulation for Stokes problem, ()
[10] Zienkiewicz, O.C.; Owen, D.R.J.; Lee, K.N., Least squares finite element for elasto-static problems—use of reduced integration, Internat. J. numer. methods engrg., 8, 341-358, (1974) · Zbl 0276.73040
[11] Oden, J.T.; Jacquotte, O.-P., Stability of some mixed finite element methods for Stokesian flows, Comput.methods appl. mech. engrg., 43, 2, 231-248, (1984) · Zbl 0598.76033
[12] Girault, V.; Raviart, P.-A., Finite element methods for Navier-Stokes equations, (1986), Springer Berlin · Zbl 0413.65081
[13] Oden, J.T.; Kikuchi, N.; Song, Y.J., Penalty finite element methods for the analysis of Stokesian flows, Comput. methods appl. mech. engrg., 31, 3, 297-330, (1982) · Zbl 0478.76041
[14] Carey, G.F.; Oden, J.T., Finite elements, () · Zbl 0788.76006
[15] Jiang, B.N.; Carey, G.F., A stable least-squares finite element method for nonlinear hyperbolic problems, Internat. J. numer. methods fluids, 8, 933-943, (1988) · Zbl 0666.76087
[16] Jiang, B.N.; Carey, G.F., Least-squares finite elements for compressible Euler equations, (), 1460-1464
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.