×

zbMATH — the first resource for mathematics

Algebraic integrability of foliations with numerically trivial canonical bundle. (English) Zbl 07061101
Summary: Given a reflexive sheaf on a mildly singular projective variety, we prove a flatness criterion under certain stability conditions. This implies the algebraicity of leaves for sufficiently stable foliations with numerically trivial canonical bundle such that the second Chern class does not vanish. Combined with the recent works of Druel and Greb-Guenancia-Kebekus this establishes the Beauville-Bogomolov decomposition for minimal models with trivial canonical class.

MSC:
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
37F75 Dynamical aspects of holomorphic foliations and vector fields
14E30 Minimal model program (Mori theory, extremal rays)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Boucksom, S.; Demailly, J-P; Păun, M.; Peternell, T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., 22, 201-248, (2013) · Zbl 1267.32017
[2] Beauville, A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom., 18, 755-782, (1984) · Zbl 0537.53056
[3] Balaji, V.; Kollár, J., Holonomy groups of stable vector bundles, Publ. Res. Inst. Math. Sci., 44, 183-211, (2008) · Zbl 1146.14023
[4] Bost, J-B, Algebraic leaves of algebraic foliations over number fields, Publ. Math. Inst. Hautes Études Sci., 93, 161-221, (2001) · Zbl 1034.14010
[5] Bando, S.; Siu, Y-T; Mabuchi, T. (ed.); Noguchi, J. (ed.); Ochiai, T. (ed.), Stable sheaves and Einstein-Hermitian metrics, 39-50, (1994), River Edge
[6] Cao, J., Höring, A.: A decomposition theorem for projective manifolds with nef anticanonical bundle. arXiv preprint arXiv: 1706.08814, to appear in Journal of Algebraic Geometry (2017)
[7] Campana, F., Păun, M.: Foliations with positive slopes and birational stability of orbifold cotangent bundles. arXiv preprint arXiv: 1508.02456 (2015)
[8] Debarre, O.: Higher-Dimensional Algebraic Geometry. Universitext. Springer, New York (2001) · Zbl 0978.14001
[9] Demailly, J-P, A numerical criterion for very ample line bundles, J. Differ. Geom., 37, 323-374, (1993) · Zbl 0783.32013
[10] Druel, S.; Guenancia, H., A decomposition theorem for smoothable varieties with trivial canonical class, J. Éc. Polytech. Math., 5, 117-147, (2018) · Zbl 1468.14030
[11] Demailly, J-P; Peternell, T.; Schneider, M., Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., 3, 295-345, (1994) · Zbl 0827.14027
[12] Druel, S., A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math., 211, 245-296, (2018) · Zbl 1419.14063
[13] Ein, L.; Lazarsfeld, R.; Mustata, M.; Nakamaye, M.; Popa, M., Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble), 56, 1701-1734, (2006) · Zbl 1127.14010
[14] Fulton, W., Harris, J.: Representation Theory: A First Course, Readings in Mathematics. Graduate Texts in Mathematics, vol. 129. Springer, New York (1991) · Zbl 0744.22001
[15] Fulger, M.; Lehmann, B., Zariski decompositions of numerical cycle classes, J. Algebr. Geom., 26, 43-106, (2017) · Zbl 1370.14010
[16] Flenner, H., Restrictions of semistable bundles on projective varieties, Comment. Math. Helv., 59, 635-650, (1984) · Zbl 0599.14015
[17] Greb, D., Guenancia, H., Kebekus, S.: Klt varieties with trivial canonical class. holonomy, differential forms, and fundamental groups. arXiv preprint arXiv: 1704.01408, to appear in Geometry & Topology (2017)
[18] Greb, D.; Kebekus, S.; Kovács, SJ; Peternell, T., Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci., 114, 87-169, (2011) · Zbl 1258.14021
[19] Greb, D.; Kebekus, S.; Peternell, T., Etale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., 165, 1965-2004, (2016) · Zbl 1360.14094
[20] Greb, D.; Kebekus, S.; Peternell, T., Movable curves and semistable sheaves, Int. Math. Res. Not. IMRN, 2, 536-570, (2016) · Zbl 1342.14022
[21] Greb, D.; Kebekus, S.; Peternell, T.; Kollár, J. (ed.); Fujino, O. (ed.); Mukai, S. (ed.); Nakayama, N. (ed.), Singular spaces with trivial canonical class, 67-113, (2016), Tokyo
[22] Hartshorne, R.: Ample Subvarieties of Algebraic Varieties. Notes Written in Collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156. Springer, Berlin (1970) · Zbl 0208.48901
[23] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977) · Zbl 0367.14001
[24] Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties, Volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1998). With the collaboration of C. H. Clemens and A. Corti
[25] Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Volume 15 of Publications of the Mathematical Society of Japan. Kanô Memorial Lectures, 5. Princeton University Press, Princeton (1987) · Zbl 0708.53002
[26] Kubota, K., Ample sheaves, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 17, 421-430, (1970) · Zbl 0212.26102
[27] Langer, A., Semistable sheaves in positive characteristic, Ann. Math. (2), 159, 251-276, (2004) · Zbl 1080.14014
[28] Lazarsfeld, R.: Positivity in Algebraic Geometry. I: Classical Setting: Line Bundles and Linear Series. Volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (2004) · Zbl 1093.14501
[29] Lazarsfeld, R.: Positivity in Algebraic Geometry. II: Positivity for Vector Bundles, and Multiplier Ideals. Volume 49 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (2004) · Zbl 1093.14500
[30] Loray, F.; Pereira, JV; Touzet, F., Foliations with trivial canonical bundle on Fano 3-folds, Math. Nachr., 286, 921-940, (2013) · Zbl 1301.37032
[31] Loray, F.; Pereira, JV; Touzet, F., Singular foliations with trivial canonical class, Invent. Math., 213, 1327-1380, (2018) · Zbl 1426.32014
[32] Lübke, M., Teleman, A.: The Kobayashi-Hitchin Correspondence. World Scientific Publishing Co. Inc, River Edge (1995) · Zbl 0849.32020
[33] Lu, S.; Taji, B., A characterization of finite quotients of abelian varieties, Int. Math. Res. Not. IMRN, 2018, 292-319, (2018) · Zbl 1423.14255
[34] Mistretta, E.: Holomorphic symmetric differentials and a birational characterization of abelian varieties. arXiv preprint arXiv: 1808.00865 (2018)
[35] Miyaoka, Y.; Oda, T. (ed.), The Chern classes and Kodaira dimension of a minimal variety, 449-479, (1987), Amsterdam
[36] Miyaoka, Y., Peternell, T.: Geometry of Higher-Dimensional Algebraic Varieties. DMV Seminar, Vol. 26. Birkhäuser Verlag, Basel (1997) · Zbl 0865.14018
[37] Mehta, VB; Ramanathan, A., Restriction of stable sheaves and representations of the fundamental group, Invent. Math., 77, 163-172, (1984) · Zbl 0525.55012
[38] Mehta, V.B., Ramanathan, A.: Semistable sheaves on projective varieties and their restriction to curves. Math. Ann. 258(3), 213-224 (1981/82) · Zbl 0473.14001
[39] Nakayama, N.: Normalized tautological divisors of semi-stable vector bundles. Surikaisekikenkyusho Kokyuroku, (1078), pp 167-173 (1999). Free resolutions of coordinate rings of projective varieties and related topics (Japanese) (Kyoto, 1998)
[40] Nakayama, N.: Zariski-Decomposition and Abundance. MSJ Memoirs, Vol. 14. Mathematical Society of Japan, Tokyo (2004) · Zbl 1061.14018
[41] Paun, M., Sur l’effectivité numérique des images inverses de fibrés en droites, Math. Ann., 310, 411-421, (1998) · Zbl 1023.32014
[42] Peternell, T., Minimal varieties with trivial canonical classes. I, Math. Z., 217, 377-405, (1994) · Zbl 0815.14009
[43] Pereira, JV; Touzet, F., Foliations with vanishing Chern classes, Bull. Braz. Math. Soc. (N.S.), 44, 731-754, (2013) · Zbl 1302.32033
[44] Simpson, CT, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math., 75, 5-95, (1992) · Zbl 0814.32003
[45] Touzet, F., Feuilletages holomorphes de codimension un dont la classe canonique est triviale, Ann. Sci. Éc. Norm. Supér. (4), 41, 655-668, (2008)
[46] Weyl, H.: The Classical Groups: Their Invariants and Representations. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1949). Princeton Paperbacks · Zbl 0020.20601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.