×

Fatigue crack analysis in piezoelectric specimens by a single-domain BEM. (English) Zbl 1464.74285

Summary: In this paper, the fatigue crack problems in piezoelectric materials under cyclic mechanical loading or alternating electric field were analyzed by a single-domain boundary element method. To determine the direction of the crack propagation, the fracture criteria of maximum of hoop mechanical strain energy release rate was used. Meanwhile, for evaluating the remaining life of the cracked piezoelectric specimens, the Paris-type laws based on different fracture parameters were employed and compared. All the involved fracture parameters were computed by the interaction integral method. Numerical examples were considered and analyzed for cyclic mechanical and electrical loadings, respectively. The comparisons showed the efficiency of the present BEM program in analyzing fatigue cracks and the choice of the effective fracture parameter in Paris’ law for life prediction.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
74F15 Electromagnetic effects in solid mechanics
74R10 Brittle fracture
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aliabadi, M. H.; Rooke, D. P., Numerical fracture mechanics (1992), Computation Mechanics Publications and Kluwer Academic Publishers: Computation Mechanics Publications and Kluwer Academic Publishers New York · Zbl 0769.73001
[2] Bechet, E.; Scherzer, M.; Kuna, M., Application of the X-FEM to the fracture of piezoelectric materials, Int J Numer Methods Eng, 77, 1535-1565 (2009) · Zbl 1158.74477
[3] Bhattacharya, S.; Pamnani, G.; Sanyal, S.; Sharma, K., Numerical simulation of crack propagation under fatigue loading in piezoelectric material using extended finite element method, Int J Comput Mater Sci Eng, 4, 4, Article 1550025 pp. (2015)
[4] Bui, T. Q., Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS, Comput Methods Appl Mech Eng, 295, 470-509 (2015) · Zbl 1423.74866
[5] Bui, T. Q.; Zhang, C., Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading, Comput Mater Sci, 62, 243-257 (2012)
[6] Cao, H.; Evans, A. G., Electric-field-induced fatigue crack growth in piezoelectrics, J Am Ceram Soc, 77, 1782-1786 (1994)
[7] Cisilino, A. P.; Aliabadi, M. H., Three-dimensional BEM analysis for fatigue crack growth in welded components, Int J Press Vessel Pip, 70, 135-144 (1997)
[8] Cisilino, A. P.; Aliabadi, M. H., Three-dimensional boundary element analysis of fatigue crack growth in linear and non-linear fracture problems, Eng Fract Mech, 63, 6, 713-733 (1999)
[9] Cruse, T. A., Numerical evaluation of elastic stress intensity factors by the boundary integral equation method in the surface crack: physical problem and computational solutions, (Swedlow, J. L. (1972), ASME: ASME New York), 153-170
[10] Dell’Erba, D. N.; Aliabadi, M. H., Three-dimensional thermo-mechanical fatigue crack growth using BEM, Int J Fatigue, 22, 4, 261-273 (2000)
[11] Fang, D. N.; Liu, B.; Sun, C. T., Fatigue crack growth in ferroelectric ceramics driven by alternating electric fields, J Am Ceram Soc, 87, 840-846 (2004)
[12] Fang, D. N.; Liu, J. X., Fracture mechanics of piezoelectric and ferroelectric solids (2012), Tsinghua University Press
[13] Fang, D. N.; Zhang, Y. H.; Mao, G. Z., Electric-field-induced fatigue crack growth in ferroelectric ceramics, Theor Appl Fract Mech, 54, 2, 98-104 (2010)
[14] Freiman, S. W.; White, G. S., Intelligent ceramic materials: issues of brittle fracture, J Intell Mater Syst Struct, 6, 49-54 (1995)
[15] Fulton, C.; Gao, H. J., Electrical nonlinearity in fracture of piezoelectric ceramics, Appl Mech Rev, 50, 56-62 (1997)
[16] Gao, H.; Zhang, T. Y.; Tong, P., Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic, J Mech Phys Solids, 45, 4, 491-510 (1997)
[17] García-Sánchez, F.; Zhang, Ch.; Sáez, A., 2-D transient dynamic analysis of cracked piezoelectric solids by a time-domain BEM, Methods Appl Mech Eng, 197, 3108-3121 (2008) · Zbl 1194.74299
[18] Hill, M. D.; White, G. S.; Hwang, C. S.; Lioyd, I. K., Cyclic damage in lead zirconate titanate, J Am Ceram Soc, 79, 1915-1920 (1996)
[19] Jański, Ł.; Kuna, M., Adaptive finite element modeling of stationary and propagating cracks in piezoelectric structures, Arch Mech, 63, 599-619 (2011) · Zbl 1448.74096
[20] Jiang, L. Z.; Sun, C. T., Crack growth behavior in piezoceramics under cyclic loads, Ferroelectrics, 233, 211-223 (1999)
[21] Jiang, Q. Y.; Subbarao, E. C.; Cross, L. E., Grain size dependence of dielectric fatigue behavior of hot-pressed PLZT ferroelectric ceramics, Acta Metall Mater, 42, 3687-3694 (1994)
[22] Kumar, S.; Singh, R. N., Crack propagation in piezoelectric materials under combined mechanical and electrical loadings, Acta Mater, 44, 173-200 (1996)
[23] Kumar, S.; Singh, R. N., Energy release rate and crack propagation in piezoelectric materials. Part I: mechanical/electrical load, Acta Mater, 45, 849-857 (1997)
[24] Kuna, M., Finite element analyses of crack problems in piezoelectric structures, Comput Mater Sci, 13, 67-80 (1998)
[25] Kuna, M., Finite element analyses of cracks in piezoelectric structures: a survey, Arch Appl Mech, 76, 725-745 (2006) · Zbl 1161.74474
[26] Kuna, M., Fracture mechanics of piezoelectric materials – where are we right now, Eng Fract Mech, 77, 309-326 (2010)
[28] Lei, J.; Garcia-Sanchez, F.; Zhang, Ch., Determination of dynamic intensity factors and time-domain BEM for interfacial cracks in anisotropic piezoelectric materials, Int J Solids Struct, 50, 9, 1482-1493 (2013)
[29] Lei, J.; Yun, L.; Bui, T., Numerical simulation of crack growth in piezoelectric structures by BEM, Eng Anal Bound Elem, 85, 30-42 (2017) · Zbl 1403.74185
[30] Lei, J.; Yun, L.; Zhang, Ch., An interaction integral and a modified crack closure integral for evaluating piezoelectric crack-tip fracture parameters in BEM, Eng Anal Bound Elem, 79, 88-97 (2017) · Zbl 1403.74186
[31] Lei, J.; Zhang, Ch., Time-domain BEM for transient interfacial crack problems in anisotropic piezoelectric bi-materials, Int J Fract, 174, 163-175 (2012)
[32] Lei, J.; Zhang, Ch., A simplified evaluation of the mechanical energy release rate of kinked cracks in piezoelectric materials using the boundary element method, Eng Fract Mech, 188, 36-57 (2018)
[33] Narita, F.; Shindo, Y.; Saito, F., Cyclic fatigue crack growth in three-point bending PZT ceramics under electromechanical loading, J Am Ceram Soc, 90, 2517-2524 (2007)
[34] Pan, E., A BEM analysis of fracture mechanics in 2-D anisotropic piezoelectric solids, Eng Anal Bound Elem, 23, 67-76 (1999) · Zbl 1062.74639
[35] Pan, E.; Amadei, B., Fracture mechanics analysis of 2-D cracked anisotropic media with a new formulation of the boundary element method, Int J Fract, 77, 161-174 (1996)
[36] Pan, E.; Yuan, F. G., Boundary element analysis of three-dimensional cracks in anisotropic solids, Int J Numer Methods Eng, 48, 211-237 (2000) · Zbl 0977.74077
[37] Park, S.; Sun, C. T., Fracture criteria of piezoelectric ceramics, J Am Ceram Soc, 78, 1475-1480 (1995)
[38] Portela, A.; Aliabadi, M. H.; Rooke, D. P., The dual boundary element method: effective implementation for crack problems, Int J Numer Methods Eng, 33, 1269-1287 (1992) · Zbl 0825.73908
[39] Portela, A.; Aliabadi, M. H.; Rooke, D. P., Dual boundary element incremental analysis of crack propagation, Comput Struct, 46, 2, 237-247 (1993) · Zbl 0825.73888
[41] Rao, B. N.; Kuna, M., Interaction integrals for fracture analysis of functionally graded magnetoelectroelastic materials, Int J Fract, 153, 15-37 (2008) · Zbl 1273.74479
[42] Salz, C.; Hoffman, M.; Westram, I.; Rödel, J., Cyclic fatigue crack growth in PZT under mechanical loading, J Am Ceram Soc, 88, 1331-1333 (2005)
[43] Shen, S.; Nishioka, T., Fracture of piezoelectric materials: energy density criterion, Theor Appl Fract Mech, 33, 57-65 (2000)
[44] Sladek, J.; Sladek, V.; Zhang, Ch.; Solek, P.; Starek, L., Fracture analyses in continuously nonhomogeneous piezoelectric solids by the MLPG, CMES, 19, 247-262 (2007) · Zbl 1184.74054
[45] Suo, Z.; Kuo, C. M.; Barnett, D. M.; Willis, J. R., Fracture mechanics for piezoelectric ceramics, J Mech Phys Solids., 4, 739-765 (1992) · Zbl 0825.73584
[46] Sáez, A.; García-Sánchez, F.; Domínguez, J., Hypersingular BEM for dynamic fracture in 2-D piezoelectric solids, Comput Methods Appl Mech Eng, 196, 235-246 (2006) · Zbl 1120.74846
[47] Winzer, S. R.; Shankar, N.; Ritter, A. P., Designing cofired multilayer electrostrictive actuators for reliability, J Am Ceram Soc, 72, 2246-2257 (1989)
[48] Xu, X. L.; Rajapakse, R. K.N. D., A theoretical study of branched cracks in piezoelectrics, Acta Mater, 48, 1865-1882 (2000)
[49] Yan, A. M.; Nguyen-Dang, H., Multiple-cracked fatigue crack growth by BEM, Comput Mech, 16, 273-280 (1995) · Zbl 0848.73077
[50] Yu, T. T.; Bui, Q. T.; Liu, P.; Zhang, Ch.; Hirose, S., Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method, Int J Solids Struct, 67-68, 205-218 (2015)
[51] Zhu, T.; Fang, F.; Yang, W., Fatigue crack growth in ferroelectric ceramics below the coercive field, J Mater Sci Lett, 18, 1025-1027 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.