×

Aerothermoelastic flutter analysis of pre-twisted thin-walled rotating blades reinforced with functionally graded carbon nanotubes. (English) Zbl 1472.74060

Summary: In this study, the aerothermoelastic flutter analysis of pre-twisted tapered rotating blades reinforced with functionally graded carbon nanotubes (FG-CNTs) under supersonic flow is investigated. Based on the thin-walled Timoshenko beam theory and quasi-steady supersonic linear piston theory, the dynamic model of the supersonic rotating blades reinforced with FG-CNTs has been developed. The CNTs are considered to be either uniformly or non-uniformly distributed in the matrix along the thickness direction. Three various CNTs distribution patterns namely, UD, FG-X and FG-O have been assumed. The properties of CNTs and polymer matrix are considered to be temperature-dependent. Based on the extended Hamilton’s principle, the equations of motion as a system of coupled linear partial deferential equations are found. The extended Galerkin method (EGM) is utilized to transform these coupled partial deferential equations to a set of coupled ordinary deferential equations. The influences of rotating speed, CNTs distribution, CNTs weight fraction, temperature, pre-twist and pre-setting angels, hub radius ratio, taper ratios and Mach number on the aerothermoelastic flutter responses of the system have been analyzed. The results indicate that the FG-X distribution pattern have predicted more strengthening the total bending of blade and the greatest flutter frequency for the composite blades. Furthermore, the pre-twist and pre-setting angles as well as taper ratio have significant effects on the flutter frequency of the thin-walled blade reinforced with CNTs.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74E30 Composite and mixture properties
74F05 Thermal effects in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
76J20 Supersonic flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aksencer, T.; Aydogdu, M., Vibration of a rotating composite beam with an attached point mass, Compos. Struct., 190, 1-9 (2018)
[2] Al-Qaisia, A. A., Dynamics of a rotating beam with flexible root and flexible hub, Struct. Eng. Mech., 30, 427-444 (2008)
[3] Alibeigloo, A., Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity, Eur. J. Mech. A Solid., 44, 104-115 (2014) · Zbl 1406.74277
[4] Arani, A. G.; Maghamikia, S.; Mohammadimehr, M.; Arefmanesh, A., Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods, J. Mech. Sci. Technol., 25, 809-820 (2011)
[5] Asadi, H.; Wang, Q., An investigation on the aeroelastic flutter characteristics of FG-CNTRC beams in the supersonic flow, Compos. B Eng., 116, 486-499 (2017)
[6] Bahaadini, R.; Dashtbayazi, M. R.; Hosseini, M.; Khalili-Parizi, Z., Stability analysis of composite thin-walled pipes conveying fluid, Ocean Eng., 160, 311-323 (2018)
[7] Bahaadini, R.; Saidi, A. R., Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow, Aero. Sci. Technol., 80, 381-391 (2018)
[8] Bahaadini, R.; Saidi, A. R., On the stability of spinning thin-walled porous beams, Thin-Walled Struct., 132, 604-615 (2018)
[9] Bahaadini, R.; Saidi, A. R., Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment, Eur. J. Mech. A Solid., 72, 298-309 (2018) · Zbl 1406.74337
[10] Bahaadini, R.; Saidi, A. R.; Hosseini, M., Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes, Acta Mech., 229, 1-17 (2018) · Zbl 1430.74032
[11] Bahaadini, R.; Saidi, A. R.; Hosseini, M., On dynamics of nanotubes conveying nanoflow, Int. J. Eng. Sci., 123, 181-196 (2018) · Zbl 1423.74456
[12] Bulut, G., Effect of taper ratio on parametric stability of a rotating tapered beam, Eur. J. Mech. A Solid., 37, 344-350 (2013) · Zbl 1347.74048
[13] Carnegie, W.; Thomas, J., The effects of shear deformation and rotary inertia on the lateral frequencies of cantilever beams in bending, J. Eng. Ind., 94, 267-278 (1972)
[14] Chai, Y. Y.; Song, Z. G.; Li, F. M., Investigations on the influences of elastic foundations on the aerothermoelastic flutter and thermal buckling properties of lattice sandwich panels in supersonic airflow, Acta Astronaut., 140, 176-189 (2017)
[15] Choi, S. C.; Park, J. S.; Kim, J. H., Vibration control of pre-twisted rotating composite thin-walled beams with piezoelectric fiber composites, J. Sound Vib., 300, 176-196 (2007)
[16] Fazelzadeh, S. A.; Hosseini, M., Aerothermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded materials, J. Fluid Struct., 23, 1251-1264 (2007)
[17] Fazelzadeh, S. A.; Malekzadeh, P.; Zahedinejad, P.; Hosseini, M., Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method, J. Sound Vib., 306, 333-348 (2007)
[18] Fazelzadeh, S. A.; Pouresmaeeli, S.; Ghavanloo, E., Aeroelastic characteristics of functionally graded carbon nanotube-reinforced composite plates under a supersonic flow, Comput. Methods Appl. Mech. Eng., 285, 714-729 (2015) · Zbl 1423.76191
[19] Fiedler, B.; Gojny, F. H.; Wichmann, M. H.; Nolte, M. C.; Schulte, K., Fundamental aspects of nano-reinforced composites, Compos. Sci. Technol., 66, 3115-3125 (2006)
[20] Ho, Y.; Chang, C.; Shyu, F.; Chen, R.; Chen, S.; Lin, M. F., Electronic and optical properties of double-walled armchair carbon nanotubes, Carbon, 42, 3159-3167 (2004)
[21] Hodges, D. Y.; Rutkowski, M. Y., Free-vibration analysis of rotating beams by a variable-order finite-element method, AIAA J., 19, 1459-1466 (1981) · Zbl 0468.73093
[22] Hosseini, M.; Bahaadini, R., Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory, Int. J. Eng. Sci., 101, 1-13 (2016) · Zbl 06984666
[23] Kandil, A.; El-Ganaini, W. A., Investigation of the time delay effect on the control of rotating blade vibrations, Eur. J. Mech. A Solid., 72, 16-40 (2018) · Zbl 1406.74301
[24] Lau, K. T.; Gu, C.; Gao, G. H.; Ling, H. Y.; Reid, S. R., Stretching process of single-and multi-walled carbon nanotubes for nanocomposite applications, Carbon, 42, 426-428 (2004)
[25] Li, L.; Zhang, D.; Guo, Y., Dynamic modeling and analysis of a rotating flexible beam with smart ACLD treatment, Compos. B Eng., 131, 221-236 (2017)
[26] Librescu, L.; Na, S., Comparative study on vibration control methodologies applied to adaptive thin-walled anisotropic cantilevers, Eur. J. Mech. A Solid., 24, 661-675 (2005) · Zbl 1074.74044
[27] Librescu, L.; Oh, S. Y.; Song, O., Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability, J. Therm. Stresses, 28, 649-712 (2005)
[28] Librescu, L.; Oh, S. Y.; Song, O., Spinning thin-walled beams made of functionally graded materials: modeling, vibration and instability, Eur. J. Mech. A Solid., 23, 499-515 (2004) · Zbl 1060.74564
[29] Librescu, L.; Song, O., Thin-walled Composite Beams: Theory and Application (2005), Springer Science & Business Media
[30] Lin, F.; Xiang, Y., Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories, Appl. Math. Model., 38, 3741-3754 (2014) · Zbl 1428.74125
[31] Manchado, M. L.; Valentini, L.; Biagiotti, J.; Kenny, J., Thermal and mechanical properties of single-walled carbon nanotubes – polypropylene composites prepared by melt processing, Carbon, 43, 1499-1505 (2005)
[32] Mirzaei, M.; Kiani, Y., Thermal buckling of temperature dependent FG-CNT reinforced composite plates, Meccanica, 51, 2185-2201 (2016) · Zbl 1386.74058
[33] Mohammadimehr, M.; Navi, B. R.; Arani, A. G., Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method, Compos. Struct., 131, 654-671 (2015)
[34] Nayak, B.; Dwivedy, S. K.; Murthy, K. S.R. K., Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core, Eur. J. Mech. A Solid., 47, 143-155 (2014) · Zbl 1406.74399
[35] Nejati, M.; Eslampanah, A.; Najafizadeh, M., Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load, Int. J. Appl. Mech., 08 (2016), 1650008
[36] Oh, S. Y.; Librescu, L.; Song, O., Thermoelastic modeling and vibration of functionally graded thin-walled rotating blades, AIAA J., 41, 2051-2061 (2003)
[37] Oh, S. Y.; Librescu, L.; Song, O., Vibration of turbomachinery rotating blades made-up of functionally graded materials and operating in a high temperature field, Acta Mech., 166, 69-87 (2003) · Zbl 1064.74090
[38] Oh, S. Y.; Librescu, L.; Song, O., Vibration and instability of functionally graded circular cylindrical spinning thin-walled beams, J. Sound Vib., 285, 1071-1091 (2005)
[39] Oh, S. Y.; Song, O.; Librescu, L., Effects of pretwist and presetting on coupled bending vibrations of rotating thin-walled composite beams, Int. J. Solids Struct., 40, 1203-1224 (2003) · Zbl 1044.74018
[40] Oh, Y.; Yoo, H. H., Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials, Int. J. Mech. Sci., 119, 68-79 (2016)
[41] Saravia, C. M.; Machado, S. P.; Cortínez, V. H., Free vibration and dynamic stability of rotating thin-walled composite beams, Eur. J. Mech. A Solid., 30, 432-441 (2011) · Zbl 1278.74080
[42] Shen, H. S., Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., 91, 9-19 (2009)
[43] Shen, H. S.; He, X. Q.; Yang, D.-Q., Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations, Int. J. Non-Linear Mech., 91, 69-75 (2017)
[44] Shen, H. S.; Zhang, C. L., Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Mater. Des., 31, 3403-3411 (2010)
[45] Shenas, A. G.; Malekzadeh, P.; Ziaee, S., Thermoelastic buckling analysis of pre-twisted functionally graded beams with temperature-dependent material properties, Acta Astronaut., 133, 1-13 (2017)
[46] Song, Z. G.; Li, F. M.; Carrera, E.; Hagedorn, P., A new method of smart and optimal flutter control for composite laminated panels in supersonic airflow under thermal effects, J. Sound Vib., 414, 218-232 (2018)
[47] Wang, F.; Zhang, W., Stability analysis of a nonlinear rotating blade with torsional vibrations, J. Sound Vib., 331, 5755-5773 (2012)
[48] Wang, X.; Morandini, M.; Masarati, P., Modeling and control for rotating pretwisted thin-walled beams with piezo-composite, Compos. Struct., 180, 647-663 (2017)
[49] Wu, H. L.; Yang, J.; Kitipornchai, S., Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams, Thin-Walled Struct., 108, 225-233 (2016)
[50] Yang, X. D.; Wang, S. W.; Zhang, W.; Yang, T. Z.; Lim, C. W., Model formulation and modal analysis of a rotating elastic uniform Timoshenko beam with setting angle, Eur. J. Mech. A Solid., 72, 209-222 (2018) · Zbl 1406.74415
[51] Yas, M. H.; Samadi, N., Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Press. Vessel. Pip., 98, 119-128 (2012)
[52] Zhi-Guang, S.; Feng-Ming, L., Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs, Smart Mater. Struct., 20 (2011), 055013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.