zbMATH — the first resource for mathematics

Factorial functions and Stirling numbers of fractional orders. (English) Zbl 0707.05002
It has long been known that its expression in terms of factorials enables the binomial coefficient \(\left( \begin{matrix} x\\ \alpha \end{matrix} \right)\) to be extrapolated to complex values of x and \(\alpha\) by means of the \(\Gamma\)-function. The authors give the extended forms of identities such as Vandermonde’s convolution formula, valid for x in the half-plane \(Re(x)>-1,\) which they show is equivalent to Gauss’s Summation Theorem expressing the hypergeometric function in terms of a series involving rising factorials. A new feature is that, unlike the \(\Gamma\)-function, \(\left( \begin{matrix} x\\ \alpha \end{matrix} \right)\) is band-limited as a function of \(\alpha\) for \(Re(x)>-1,\) so in this range the extended values of \(\left( \begin{matrix} x\\ \alpha \end{matrix} \right)\) can be obtained by Nyquist-Shannon interpolation from the values for integer \(\alpha\). Indeed, the interpolation formula is a special case of the convolution formula. Also the Stirling numbers, s(\(\alpha\),k) and S(\(\alpha\),k), being the coefficients in the expression of the falling factorials \([x]_{\alpha}\quad (=\Gamma (x+1)/\Gamma (x-\alpha +1))\) as a sum of powers \(x^ k\) and vice versa, can be extrapolated to complex values of \(\alpha\). It is shown that \(s(\alpha,k)/\Gamma (\alpha +1)\) is given by Nyquist-Shannon interpolation of its values for integer \(\alpha\), and other identities are proved. The Bell numbers B(\(\alpha\)) are also extrapolated to complex \(\alpha\), both via their expression as the sum of the S(\(\alpha\),k) and, equivalently, via the Dobinski formula.
Reviewer: P.A.B.Pleasants

05A10 Factorials, binomial coefficients, combinatorial functions
05A19 Combinatorial identities, bijective combinatorics
11B65 Binomial coefficients; factorials; \(q\)-identities
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
33B15 Gamma, beta and polygamma functions
33C99 Hypergeometric functions
Full Text: DOI
[1] Abramowitz, H.; Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, Inc., New York 1965. · Zbl 0171.38503
[2] Aigner, M.: Kombinatorik I. Springer Verlag, Berlin – Heidelberg – New York 1975. · Zbl 0373.05001
[3] Andrews, G.E.: Applications of basic hypergeometric functions. SIAM Review 16 (1974), 441–484. · Zbl 0299.33004
[4] Andrews, G.E.: The Theory of Partitions. Encyclopedia of Mathematics and its Applications Vol. 2. Addison-Wesley Publishing Company London 1976. · Zbl 0371.10001
[5] Andrews, G.E.: q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra. CBMS 66. Amer. Math. Soc, Providence, Rhode Island 1986. · Zbl 0594.33001
[6] Buck, R.C.:Interpolation series. Trans. Amer. Math. Soc. 64 (1948), 283–298. · Zbl 0033.36401
[7] Butzer, P.L.; Nessel, R.J.: Fourier Analysis and Approximation, Vol. I, One Dimensional Theory. Academic Press, New York and Birkhäuser Basel 1971. · Zbl 0217.42603
[8] Butzer, P.L.; Schmidt, M.; Stark, E.L.; Vogt L.: Central factorial numbers; their main properties and some applications. Num. Funct. Anal. Optim. 10 (1989), 419–488. · Zbl 0659.10012
[9] Butzer, P.L.; Splettstö\(\backslash\)er, W.; Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch.-Math. Verein. 90 (1988), 1–70. · Zbl 0633.94002
[10] Butzer, P.L.; Vestphal, U.: An access to fractional differentiation via fractional difference quotients, in: Fractional Calculus and Its Applications. Lecture Notes in Mathematics, No. 457, Springer Verlag Berlin 1975, pp. 116–145.
[11] Comtet, L.: Advanced Combinatorics. D. Reidel Publishing Company, Dordrecht 1974. (First Published 1970 by Presses Universitaires de France, Paris).
[12] Davis, P.J.: Interpolation and Approximation. Dover Publications, Inc., New York, 1975 (Original Edition: Blaisdell, Waltham, Mass. 1963). · Zbl 0111.06003
[13] Egoryshev, G.P.: Integral Representation and the Computation of Combinatorial sums. (Transi. Math. Monographs Vol. 59) American Math. Society, Providence, Rhode Island 1984 (Russian Edition 1977).
[14] Gel’fond, A.O.: Calculus of Finite Differences. dustan Publishing Corporation (India) 1971 (Original Russian Edition 1952
[15] Gould, H.V.: Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, Published by the author, Morgantown, W. Virginia 1972. · Zbl 0241.05011
[16] Gould, H.W.: The Lagrange interpolation formula and Stirling numbers, Proc. Amer. Math. Soc, 11 (1960), 421–425. · Zbl 0102.04904
[17] Gould, E.W.: Note on recurrence relations for Stirling numbers. Publ. Inst. Math. 20 (1966), 115–119. · Zbl 0145.01403
[18] Graham, R.L.; Knuth, D.E.; Patashnik, O.: Concrete Mathematics. Addison-Vesley Publishing Company, Reading, Mass. 1989. · Zbl 0668.00003
[19] Halder, H.-R.; Heise, V.: Einführung in die Kombinatorik. Carl Hanser Verlag, München 1976. · Zbl 0362.05001
[20] Hansen, E.R.; A Table of Series and Products. Prentice-Hall, Englewood Cliffs 1975. · Zbl 0438.00001
[21] Jordan, C: Calculus of Finite Differences. Chelsea Publishing Company, New York 1950 (Original Edition Budapest 1939). · Zbl 0041.05401
[22] Loeb, D.E.; Rota, G.-C: Formal power series of logarithmic type ( in print). · Zbl 0688.05001
[23] Luke, Y.L.: Mathematical Functions and their Approximations. Academic Press Inc., New York 1975. · Zbl 0318.33001
[24] Markett, C.; Rosenblum, M.; Rovnyak, J.: A Plancherel theory for Newton spaces. Integral Equations Operator Theory 9 (1986), 831–862. · Zbl 0613.30035
[25] Milne-Thomson, L.M.: The Calculus of Finite Differences. Macmillan & Co Ltd., New York 1960 (Original Edition 1933).
[26] Neuman, E.: Moments and Fourier transforms of B-splines. J. Comput. Appl. Math. 7 (1981), 51–62. · Zbl 0452.42006
[27] Nielsen, N.: Die Gammafunktion. Chelsea Publishing Company, New York 1965 (First Edition 1906).
[28] Nörlund, N.E.: Vorlesung über Differenzenrechnung. Chelsea Publishing Company, New York 1954 (First Edition: Springer, Berlin 1924). · JFM 50.0318.04
[29] Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York 1974. · Zbl 0303.41035
[30] Riordan, J.: An Introduction to Combinatorial Analysis. John Wiley & Sons, New York 1958. · Zbl 0078.00805
[31] Riordan, J.: Combinatorial Identities. R.E. Krieger Publishing Company, Huntington, New York 1979. · Zbl 0194.00502
[32] Rota, G.C.: Finite Operator Calculus. Academic Press, New York 1975. · Zbl 0328.05007
[33] Schumaker, L.L.: Spline Functions: Basic Theory. John Wiley & Sons, New York 1981. · Zbl 0449.41004
[34] Schoenberg, I.J.: Cardinal Spline Interpolation. CBMS 12. SIAM, Philadelphia 1973.
[35] Slater, L.J.: Generalized Hypergeometric Functions. Cambridge Univ. Press, Cambridge, London and New York 1966. · Zbl 0135.28101
[36] Srivastava, H.M.; Manocha, H.L.: A Treatise on Generating Functions. Ellis Horwood Limited, New York 1984. · Zbl 0535.33001
[37] Steffensen, J.F.: Interpolation. Bailliere, Tindall & Cox, London 1927 (Reprint Chelsea, New York 1950).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.