zbMATH — the first resource for mathematics

The automorphism group of the modular curve \(X_ 0(63)\). (English) Zbl 0708.14016
The author determines the automorphism group of the (compactified) modular curve \(X_ 0(N)\) for \(N=63\). In this case not all automorphisms come from the normalizer of \(\Gamma_ 0(N)\) in \(PSL_ 2({\mathbb{R}})\). For all other values of N the automorphism group was determined by M. A. Kenku and F. Momose in Compos. Math. 65, No.1, 51-80 (1988; Zbl 0686.14035)].
Reviewer: R.Pink

14G35 Modular and Shimura varieties
14H45 Special algebraic curves and curves of low genus
14E07 Birational automorphisms, Cremona group and generalizations
Full Text: Numdam EuDML
[1] Birch, B.J., Kuyk, W., ed: Modular Functions of One Variable IV , Lect. Notes Math. 476, 1975. · Zbl 0315.14014 · doi:10.1007/BFb0097580
[2] Fricke, R. : Die elliptischen Functionen und ihre Anwendungen . Leipzig-Berlin: Teubner 1922. · JFM 48.0432.01
[3] Kenku, M.A. , Momose, F. , Automorphism groups of the modular curves X0(N) . Comp. Math. 65 (1988) 51-80. · Zbl 0686.14035 · numdam:CM_1988__65_1_51_0 · eudml:89883
[4] Mazur, B. , Swinnerton- Dyer, P. , Arithmetic of Weil Curves . Inv. Math. 25 (1974) 1 - 61. · Zbl 0281.14016 · doi:10.1007/BF01389997 · eudml:142281
[5] Matzat, B.H. , Konstruktive Galoistheorie . Lect. Notes Math. 1284, 1987. · Zbl 0634.12011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.