Algebraic K-theory of Grassmann varieties and their convoluted forms. (English. Russian original) Zbl 0708.14033

Funct. Anal. Appl. 23, No. 2, 143-144 (1989); translation from Funkts. Anal. Prilozh. 23, No. 2, 71-72 (1989).
Let \(Y\) be a Noetherian scheme over a field of characteristic zero, \(\mathcal E\) a vector bundle of rank \(n\) over \(Y\), and \(G=\text{Gr}(k,\mathcal E)\xrightarrow {p} Y\) the bundle of Grassmannians associated with \(\mathcal E\). The author shows that the natural homomorphism \(K_0(G)\otimes K_i(Y)\to K_i(G)\) is an isomorphism, and describes two bases of \(K_0(G)\) over \(K_0(Y)\). A similar result is obtained for the bundle of Grassmannians \(p: G\to Y\) determined by an element \(\phi \in H^1_{\text{et}}(Y, \mathrm{PGL}(n))\).
These results represent a generalization of results by D. Quillen [in: Algebraic K-theory I, Proc. Conf. Battelle Inst. 1972, Lecture Notes Math. 341, 85–147 (1973; Zbl 0292.18004)] for \(k=1\). The methods used by the author differ substantially from those of D. Quillen.


14M15 Grassmannians, Schubert varieties, flag manifolds
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
19E99 \(K\)-theory in geometry


Zbl 0292.18004
Full Text: DOI


[1] A. A. Beilinson, Funkts. Anal. Prilozhen.,12, No. 3, 68-69 (1978).
[2] I. N. Bernshtein, I. M. Gel’fand, and S. I. Gel’fand, Funkts. Anal. Prilozhen.,12, No. 3, 66-67 (1978).
[3] M. M. Kapranov, Funkts. Anal. Prilozhen.,17, No. 2, 78-79 (1985).
[4] D. Mumford, Abelian Varieties [Russian translation], Mir, Moscow (1971). · Zbl 0222.14023
[5] A. Grothendieck, North-Holland (1968).
[6] D. Quillen, Lect. Notes Math.,341, 85-147 (1972). · Zbl 0292.18004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.