×

zbMATH — the first resource for mathematics

Derivative formulas and applications for degenerate stochastic differential equations with fractional noises. (English) Zbl 07081638
Summary: For degenerate stochastic differential equations driven by fractional Brownian motions with Hurst parameter \(H>1/2\), the derivative formulas are established by using Malliavin calculus and coupling method, respectively. Furthermore, we find some relation between these two approaches. As applications, the (log) Harnack inequalities and the hyperbounded property are presented.
MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alòs, E.; Mazet, O.; Nualart, D., Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29, 766-801, (2001) · Zbl 1015.60047
[2] Arnaudon, M.; Thalmaier, A.; Wang, FY, Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds, Stoch. Process. Appl., 119, 3653-3670, (2009) · Zbl 1178.58013
[3] Ayache, A.; Shieh, NR; Xiao, YM, Multiparameter multifractional Brownian motion: local nondeterminism and joint continuity of the local times, Ann. Inst. H. Poincaré Probab. Stat., 47, 1029-1054, (2011) · Zbl 1268.60048
[4] Bao, J.; Wang, FY; Yuan, C., Derivative formula and Harnack inequality for degenerate functional SDEs, Stoch. Dyn., 13, 1-22, (2013) · Zbl 1262.60052
[5] Bao, J.; Wang, FY; Yuan, C., Bismut formulae and applications for functional SPDEs, Bull. Sci. Math., 137, 509-522, (2013) · Zbl 1281.60058
[6] Baudoin, F.; Ouyang, C., Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions, Stoch. Process. Appl., 121, 759-792, (2011) · Zbl 1222.60034
[7] Baudoin, F.; Ouyang, C.; Tindel, S., Upper bounds for the density of solutions of stochastic differential equations driven by fractional Brownian motions, Ann. Inst. H. Poincaré Probab. Stat., 50, 111-135, (2014) · Zbl 1286.60051
[8] Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Springer, London (2008) · Zbl 1157.60002
[9] Bismut, J.M.: Large Deviation and The Malliavin Calculus. Birkhäuser, Boston (1984) · Zbl 0537.35003
[10] Coutin, L.; Qian, Z., Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Relat. Fields, 122, 108-140, (2002) · Zbl 1047.60029
[11] Prato, G.; Röckner, M.; Wang, FY, Singular stochastic equations on Hilberts space: Harnack inequalities for their transition semigroups, J. Funct. Anal., 257, 992-1017, (2009) · Zbl 1193.47047
[12] Decreusefond, L.; Üstünel, AS, Stochastic analysis of the fractional Brownian motion, Potential Anal., 10, 177-214, (1998) · Zbl 0924.60034
[13] Dong, Z.; Xie, Y., Ergodicity of linear SPDE driven by Lévy noise, J. Syst. Sci. Complex, 23, 137-152, (2010) · Zbl 1298.60065
[14] Driver, B., Integration by parts for heat kernel measures revisited, J. Math. Pures Appl., 76, 703-737, (1997) · Zbl 0907.60052
[15] Elworthy, KD; Li, XM, Formulae for the derivatives of heat semigroups, J. Funct. Anal., 125, 252-286, (1994) · Zbl 0813.60049
[16] Fan, XL, Harnack inequality and derivative formula for SDE driven by fractional Brownian motion, Sci. China Math., 561, 515-524, (2013) · Zbl 1273.60068
[17] Fan, XL, Integration by parts formula and applications for SDEs driven by fractional Brownian motions, Stoch. Anal. Appl., 33, 199-212, (2015) · Zbl 1315.60064
[18] Fan, XL, Logarithmic Sobolev inequalities for fractional diffusion, Statist. Probab. Lett., 106, 165-172, (2015) · Zbl 1397.60050
[19] Fan, XL; Ren, Y., Bismut formulae and applications for stochastic (functional) differential equations driven by fractional Brownian motions, Stoch. Dyn., 7, 19, (2017) · Zbl 1367.60081
[20] Fang, S.; Li, H.; Luo, D., Heat semi-group and generalized flows on complete Riemannian manifolds, Bull. Sci. Math., 135, 565-600, (2011) · Zbl 1236.58038
[21] Guillin, A.; Wang, FY, Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality, J. Differ. Equ., 253, 20-40, (2012) · Zbl 1306.60121
[22] Hairer, M., Ergodicity of stochastic differential equations driven by fractional Brownian motion, Ann. Probab., 33, 703-758, (2005) · Zbl 1071.60045
[23] Hairer, M.; Pillai, NS, Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Stat., 47, 601-628, (2011) · Zbl 1221.60083
[24] Jaramillo, A.; Nualart, D., Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion, Stoch. Process. Appl., 127, 669-700, (2017) · Zbl 1354.60042
[25] Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics. Birkhäuser, Boston (1988) · Zbl 0624.33001
[26] Nourdin, I.; Simon, T., On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion, Stat. Probab. Lett., 76, 907-912, (2006) · Zbl 1091.60008
[27] Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006) · Zbl 1099.60003
[28] Nualart, D.; Ouknine, Y., Regularization of differential equations by fractional noise, Stoch. Process. Appl., 102, 103-116, (2002) · Zbl 1075.60536
[29] Nualart, D.; Răşcanu, A., Differential equations driven by fractional Brownian motion, Collect. Math., 53, 55-81, (2002) · Zbl 1018.60057
[30] Nualart, D.; Saussereau, B., Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, Stoch. Process. Appl., 119, 391-409, (2009) · Zbl 1169.60013
[31] Priola, E., Formulae for the derivatives of degenerate diffusion semigroups, J. Evol. Equ., 6, 577-600, (2006) · Zbl 1116.35075
[32] Saloff-Coste, L., Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below, Colloq. Math., 67, 109-121, (1994) · Zbl 0816.53027
[33] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Science Publishers, Yvendon (1993) · Zbl 0818.26003
[34] Saussereau, B., Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion, Bernoulli, 18, 1-23, (2012) · Zbl 1242.60056
[35] Wang, FY, Derivative formula and Harnack inequality for SDEs driven by Lévy processes, Stoch. Anal. Appl., 32, 30-49, (2014) · Zbl 1296.60230
[36] Wang, F.Y.: Harnack Inequalities for Stochastic Partial Differential Equations. Springer, Berlin (2013) · Zbl 1332.60006
[37] Wang, FY; Xu, L., Derivative formulae and applications for hyperdissipative stochastic Navier-Stokes/Burgers equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 1-19, (2012) · Zbl 1264.60047
[38] Wang, FY; Zhang, XC, Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl., 99, 726-740, (2013) · Zbl 1328.60141
[39] Yan, LT, The fractional derivative for fractional Brownian local time, Math. Z., 283, 437-468, (2016) · Zbl 1338.60111
[40] Young, LC, An inequality of the Hölder type connected with Stieltjes integration, Acta Math., 67, 251-282, (1936) · Zbl 0016.10404
[41] Zähle, M., Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Relat. Fields, 111, 333-374, (1998) · Zbl 0918.60037
[42] Zhang, SQ, Harnack inequality for semilinear SPDEs with multiplicative noise, Stat. Probab. Lett., 83, 1184-1192, (2013) · Zbl 1267.60075
[43] Zhang, XC, Stochastic flows and Bismut formulas for stochastic Hamiltonian systems, Stoch. Process. Appl., 120, 1929-1949, (2010) · Zbl 1200.60049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.