×

zbMATH — the first resource for mathematics

Idempotent analysis as a tool of control theory and optimal synthesis. I. (English. Russian original) Zbl 0709.49014
Funct. Anal. Appl. 23, No. 1, 1-11 (1989); translation from Funkts. Anal. Prilozh. 23, No. 1, 1-14 (1989).
See the review in Zbl 0692.49022.

MSC:
49L20 Dynamic programming in optimal control and differential games
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. M. Avdoshin, V. V. Belov, and V. P. Maslov, ”Application of methods of wave and geometrical optics in the architecture of modern computing systems,” Usp. Mat. Nauk,39, No. 4, 108-109 (1984).
[2] S. M. Avdoshin, V. V. Belov, and V. P. Maslov, Mathematical Aspects of Synthesis of Computing Media [in Russian], Izd. MIEM, Moscow (1984). · Zbl 0597.49001
[3] V. P. Maslov, ”Quasilinear systems which are linear in some semimoduli,” in: Congrès international sur les problemes hyperboliques, 13-17 janvier 1986, Saint-Etienne, France.
[4] V. P. Maslov, ”New superposition principle for optimisation problems,” in: Séminaire équations au dérivées partielles, No. 24, Paris (1985-1986).
[5] V. P. Maslov, Asymptotic Methods for Solution of Pseudodifferential Equations [in Russian], Nauka, Moscow (1987). · Zbl 0625.35001
[6] V. P. Maslov, ”On a new superposition principle for optimization problems,” Usp. Mat. Nauk,42, No. 3, 39-48 (1987). · Zbl 0707.35138
[7] V. P. Maslov, ”A new approach to generalized solutions of nonlinear systems,” Dokl. Akad. Nauk SSSR,292, No. 1, 37-41 (1987). · Zbl 0657.35031
[8] V. P. Maslov and A. M. Chebotarev, ”Displacement of boundary conditions and uniqueness theorems for nonlinear boundary-value problems,” Dokl. Akad. Nauk SSSR,289, No. 1, 47-51 (1987). · Zbl 0631.34026
[9] V. N. Kolokol’tsov and V. P. Maslov, ”The Cauchy problem for the homogeneous Bellman equation,” Dokl. Akad. Nauk SSSR,296, No. 4, 796-800 (1987).
[10] V. N. Kolokol’tsov and V. P. Maslov, ”General form of endomorphisms in the space of continuous functions with value in a real commutative semiring (with operation ? = max),” Dokl. Akad. Nauk SSSR,295, No. 2, 283-287 (1987).
[11] P. I. Dudnikov and S. N. Samborskii, ”Endomorphisms of semimodules over semirings with an idempotent operation,” Preprint, Mathematics Institute, Akad. Nauk UkrSSR, 87.48, Kiev (1987).
[12] S. M. Avdoshin, V. V. Belov, V. P. Maslov, and A. M. Piterkin, Optimization of Flexible Production Systems [in Russian], Izd. MIEM, Moscow (1987).
[13] V. V. Voevodin, Parallel Structures of Algorithms and Programs [in Russian], Izd. OVM Akad. Nauk SSSR (1987). · Zbl 0705.68055
[14] S. N. Kruzhkov, Nonlinear Partial Differential Equations (Lectures), Vol. 2 [in Russian], Moscow State Univ. (1970). · Zbl 0215.16203
[15] M. G. Crandall and P. L. Lions, ”Viscosity solutions of Hamilton?Jacobi equations,” Trans. Am. Math. Soc.,27, 1-40 (1983). · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[16] L. C. Evans, ”Some min?max methods for the Hamilton?Jacobi equation,” Indiana Univ. Math. J.,33, No. 1, 31-51 (1984). · Zbl 0543.35012 · doi:10.1512/iumj.1984.33.33002
[17] H. Furstenberg, ”Strict ergodicity and transformations of the torus,” Am. J. Math.,83, No. 4, 573-601 (1961). · Zbl 0178.38404 · doi:10.2307/2372899
[18] I. Ekeland and R. Temam, Analyse convexe et problèmes variationels, Dunod, Paris (1974). · Zbl 0281.49001
[19] I. V. Romanovskii, ”Optimization of steady-state control of a discrete deterministic dynamic programming system,” Kibernetika, No. 2, 66-78 (1967).
[20] I. V. Romanovskii, ”Asymptotic behavior of a discrete deterministic process with continuous set of states,” Optimal’noe Planirovanie (Novosibirsk), No. 8, 71-93 (1967).
[21] M. Gondran, ”Path algebra and algorithms,” in: Combinatorial Programming Methods and Applications, B. Roy (ed.) (1975), pp. 137-148. · Zbl 0326.90060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.