×

Nonlinear Reynolds stress models and the renormalization group. (English) Zbl 0709.76068

Summary: The renormalization group is applied to derive a nonlinear algebraic Reynolds stress model of anisotropic turbulence in which the Reynolds stresses are quadratic functions of the mean velocity gradients. The model results from a perturbation expansion that is truncated systematically at second order with subsequent terms contributing no further information. The resulting turbulence model applies to both low and high Reynolds number flows without requiring wall functions or ad hoc modifications of the equations. All constants are derived from the renormalization group procedure; no adjustable constants arise. The model permits inequality of the Reynolds normal stresses, a necessary condition for calculating turbulence-driven secondary flows in noncircular ducts.

MSC:

76F99 Turbulence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2
[2] DOI: 10.1017/S0022112084000574 · Zbl 0563.76056
[3] DOI: 10.1017/S0022112070000678
[4] DOI: 10.1017/S0022112087001319 · Zbl 0634.76064
[5] DOI: 10.1063/1.864780 · Zbl 0572.76048
[6] DOI: 10.1143/JPSJ.55.1904
[7] DOI: 10.2514/3.9639 · Zbl 0616.76072
[8] Rivlin R. S., Q. Appl. Math. 15 pp 212– (1957) · Zbl 0079.17905
[9] DOI: 10.1017/S0022112059000362 · Zbl 0093.41202
[10] DOI: 10.1007/BF01061452 · Zbl 0648.76040
[11] DOI: 10.1016/0003-4916(61)90056-2 · Zbl 0099.42003
[12] DOI: 10.1016/0370-1573(74)90023-4
[13] DOI: 10.1299/kikaib.55.991
[14] DOI: 10.1016/S0045-7930(87)80003-8 · Zbl 0616.76070
[15] DOI: 10.1143/JPSJ.51.2326
[16] DOI: 10.1063/1.866366
[17] DOI: 10.1063/1.862708 · Zbl 0416.76026
[18] DOI: 10.1063/1.866077 · Zbl 0636.76048
[19] DOI: 10.1103/PhysRevA.40.5193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.