Multi-Hamiltonian property of a linear system with quadratic invariant. (English. Russian original) Zbl 1479.37058

St. Petersbg. Math. J. 30, No. 5, 877-883 (2019); translation from Algebra Anal. 30, No. 5, 159-168 (2018).
The paper is organized in three sections. In Section 1 the author defines a multi-Hamiltonian system associated to a linear system of differentiable equations \(\dot x= Ax\), \(x\in\mathbb{R}^k\), with a quadratic invariant \(f=\frac12(Bx,x)\), where \(A\) and \(B\) are nondegenerate operators and \(B\) is selfadjoint w.r.t. the scalar product \((\cdot,\cdot)\) in \(\mathbb{R}^k.\) This linear system is endowed with a natural symplectic structure \(\Omega(\xi,\eta)=(\Gamma\xi,\eta)\) with \(\Gamma=BA^{-1}\) and \(\xi,\eta\in\mathbb{R}^k\). The author proves the existence of a chain of different symplectic structures \(\Omega_m(\xi,\eta)=(\Gamma_m\xi,\eta)\) with \(\Gamma_m=A^{*m}\Gamma A^m\) and Hamiltonians \(f_m=\frac12(B_mx,x)\) with \(B_m=A^{*m}B A^m\) in involution w.r.t. all \(\Omega_m\), that are independent when the spectrum of the operator \(A\) is simple.
In Section 2, the author proves that a monotone nonincreasing or nondecreasing quadratic form \(f=\frac12(Bx,x)\) along the solutions of the linear system \(\dot x= Ax\), i.e., \(\dot f=BA^*+B^*A\) is nonpositive or nonnegative, implies that the quadratic form \(f_m=\frac12(B_mx,x)\) is respectively monotone nonincreasing or nondecreasing along the solutions of the linear system, for each integer \(m\). In this section, the author also generalizes the results of the previous section to the case of a time-periodic linear system of differential equations that admit a time-periodic quadratic integral with the same period. The author uses a linear transformation \(x\mapsto Fx\) that admits an invariant quadratic form \((Bx,x)\) to define the chain of symplectic forms and Hamiltonians. The operators \(B\) and \(F\) satisfy two nondegeneracy conditions that enable to define the Cayley transformation \(F\mapsto A=(F+I)(F-I)^{-1}\), essential to prove the last theorem.
Finally, in the last section the author gives references and explains the connection between the results given in the paper and known results about multi-Hamiltonian systems.


37J06 General theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
Full Text: DOI


[1] 1 V. V. Kozlov, Linear systems with a quadratic integral, Prikl. Mat. Mekh. 56 (1992), no. 6, 900-906; English transl., Appl. Math. Mech.  56 (1992), no. 6, 803-809.
[2] 2 D. V. Treshch\"ev and A. A. Shkalikov, On the Hamiltonian property of linear dynamical systems in Hilbert space, Mat. Zametki  101 (2017), no. 6, 911-918; English transl., Math. Notes 101 (2017), no. 5-6, 1033-1039. · Zbl 06769031
[3] 3 V. Volterra, Sopra una classe di equazioni dinamiche, Atti Accad. Sci. Torino 33 (1897-98), 451-475.
[4] 4 E. B. Gledzer, F. V. Dolzhanski\i , and A. M. Obukhov, Systems of hydrodynamic type and their application, Nauka, Moscow, 1981. (Russian) · Zbl 0512.76003
[5] 5 I. A. Bizyaev and V. V. Kozlov, Homogeneous systems with quadratic integrals, Lie-Poisson quasi-brackets and the Kovalevskaya method, Mat. Sb.  206 (2015), no. 12, 29-54; English transl., Sb. Math. 206 (2015), no. 11-12, 1682-1706. · Zbl 1358.37099
[6] 6 V. V. Kozlov, Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability, Regul. Chaotic Dyn.  23 (2018), no. 1, 26-46. · Zbl 1400.37061
[7] 7 J. Williamson, An algebraic problem involving the involutory integrals of linear dynamical systems, Amer. J. Math.  62 (1940), 881-911. · JFM 66.0991.02
[8] 8 F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), no. 5, 1156-1162. · Zbl 0383.35065
[9] 9 P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., vol. 107, Springer-Verlag, New York, 1993. · Zbl 0785.58003
[10] 10 A. V. Borisov and I. S. Manaev, Modern methods in the theory of integrable systems, Inst. Komp’yut. Issled., Izhevsk, 2003. (Russian)
[11] 11 A. Wintner, On the linear conservative dynamical systems, Ann. Mat. Pura Appl. 13 (1934), no. 1, 105-112. · Zbl 0009.37904
[12] 12 H. Kocak, Linear Hamiltonian systems are integrable with quadratics, J. Math. Phys. 23 (1982), no. 12, 2375-2380. · Zbl 0507.70015
[13] 13 V. V. Kozlov, On the mechanism of stability loss, Differ. Uravn. 45 (2009), no. 4, 496-505; English transl., Differ. Equ.  45 (2009), no. 4, 510-519. · Zbl 1375.70018
[14] 14 H. Weyl, The classical groups. Their envariants and representations, Princeton Univ. Press, Princeton, NJ, 1939.
[15] 15 V. V. Kozlov, The Liouville property of invariant measures of completely integrable systems and the Monge-Amp\`ere, Mat. Zametki  53 (1993), no. 4, 45-52; English transl., Math. Notes 53 (1993), no. 3-4, 389-393.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.